Do you want to publish a course? Click here

Mossbauer experiments in a rotating system: The so-called synchronization effect to explain the extra energy shift between emitted and absorbed radiation constitutes a complete failure

118   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that a new attempt by C. Corda to once more rehash his so-called synchronization effect in order to account for the origin of the extra energy shift between emitted and absorbed radiation in Mossbauer rotor experiments (C. Corda, Int. J. Mod. Phys. D, doi: 10.1142/S0218271819501311) is yet again erroneous, just as were his previous attempts (Ann. Phys. 355, 360 (2015); Ann. Phys. 368, 258 (2016); Int. J. Mod. Phys. D 27, 1847016 (2018)). The correct approach presented herein with regards to the calculation of the energy shift between emitted and absorbed radiation in a rotating system leads to, as a matter of fact, no specific synchronization effect.



rate research

Read More

We present the results of a novel Mossbauer experiment in a rotating system, implemented recently in Istanbul University, which yields the coefficient k=0.69+/-0.02 within the frame of the expression for the relative energy shift between emission and absorption lines dE/E=ku2/c2. This result turned out to be in a quantitative agreement with an experiment achieved earlier on the subject matter (A.L. Kholmetskii et al. 2009 Phys. Scr. 79 065007), and once again strongly pointed to the inequality k>0.5, revealed originally in (A.L. Kholmetskii et al. 2008 Phys. Scr. 77, 035302 (2008)) via the re-analysis of Kundig experiment (W. Kundig. Phys. Rev. 129, 2371 (1963)). A possible explanation of the deviation of the coefficient k from the relativistic prediction k=0.5 is discussed.
We shortly review different attempts to interpret the results of Moessbauer rotor experiments in a rotating system and particularly we show that the latest work on this subject by J. Iovane and E. Benedetto (Ann. Phys., in press), which claims that the outcomes of these experiments can supposedly be explained via desynchronization of clocks in the rotating frame and in the laboratory frame, is inapplicable to all of the Moessbauer rotor experiments performed up to date and thus does not have any significance.
Many recent integral integral field spectroscopy (IFS) survey teams have used stellar kinematic maps combined with imaging to statistically infer the underlying distributions of galaxy intrinsic shapes. With now several IFS samples at our disposal, the method, which was originally proposed by M. Franx and collaborators in 1991, is gaining in popularity, having been so far applied to ATLAS3D, SAMI, MANGA and MASSIVE. We present results showing that a commonly assumed relationship between dynamical and intrinsic shape alignment does not hold in Illustris, affecting our ability to recover accurate intrinsic shape distributions. A further implication is that so-called prolate rotation, where the bulk of stars in prolate galaxies are thought to rotate around the projected major axis, is a misnomer.
We investigate the radiation emitted from a scalar source in circular orbit around a Reissner-Nordstrom black hole. Particle and energy emission rates are analytically calculated in the low- and high-frequency regimes and shown to be in full agreement with a numerical calculation. Our investigation is connected with the recent discussion on the validity of the cosmic censorship conjecture in the quantum realm.
296 - Nicola Scafetta 2014
The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772) that successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research have further confirmed that: (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g. within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~178.38 yr; (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennia time scales. This short review concludes with an emphasis on the contribution of the authors research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that synchronizes also the Suns activity and the Earths climate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا