Property $P_{naive}$ for acylindrically hyperbolic groups


Abstract in English

We prove that every acylindrically hyperbolic group that has no non-trivial finite normal subgroup satisfies a strong ping pong property, the $P_{naive}$ property: for any finite collection of elements $h_1, dots, h_k$, there exists another element $gamma eq 1$ such that for all $i$, $langle h_i, gamma rangle = langle h_i rangle* langle gamma rangle$. We also obtain that if a collection of subgroups $H_1, dots, H_k$ is a hyperbolically embedded collection, then there is $gamma eq 1$ such that for all $i$, $langle H_i, gamma rangle = H_i * langle gamma rangle$.

Download