Zero Lie product determined Banach algebras


Abstract in English

A Banach algebra $A$ is said to be zero Lie product determined if every continuous bilinear functional $varphi colon Atimes Ato mathbb{C}$ with the property that $varphi(a,b)=0$ whenever $a$ and $b$ commute is of the form $varphi(a,b)=tau(ab-ba)$ for some $tauin A^*$. In the first part of the paper we give some general remarks on this class of algebras. In the second part we consider amenable Banach algebras and show that all group algebras $L^1(G)$ with $G$ an amenable locally compact group are zero Lie product determined.

Download