Do you want to publish a course? Click here

Manifest and Subtle Cyclic Behavior in Nonequilibrium Steady States

100   0   0.0 ( 0 )
 Added by Dibyendu Mandal
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many interesting phenomena in nature are described by stochastic processes with irreversible dynamics. To model these phenomena, we focus on a master equation or a Fokker-Planck equation with rates which violate detailed balance. When the system settles in a stationary state, it will be a nonequilibrium steady state (NESS), with time independent probability distribution as well as persistent probability current loops. The observable consequences of the latter are explored. In particular, cyclic behavior of some form must be present: some are prominent and manifest, while others are more obscure and subtle. We present a theoretical framework to analyze such properties, introducing the notion of probability angular momentum and its distribution. Using several examples, we illustrate the manifest and subtle categories and how best to distinguish between them. These techniques can be applied to reveal the NESS nature of a wide range of systems in a large variety of areas. We illustrate with one application: variability of ocean heat content in our climate system.



rate research

Read More

We study periodic steady states of a lattice system under external cyclic energy supply using simulation. We consider different protocols for cyclic energy supply and examine the energy storage. Under the same energy flux, we found that the stored energy depends on the details of the supply, period and amplitude of the supply. Further, we introduce an adiabatic wall as internal constrain into the lattice and examine the stored energy with respect to different positions of the internal constrain. We found that the stored energy for constrained systems are larger than their unconstrained counterpart. We also observe that the system stores more energy through large and rare energy delivery, comparing to small and frequent delivery.
Laser technology has developed and accelerated photo-induced nonequilibrium physics from both scientific and engineering viewpoints. The Floquet engineering, i.e., controlling material properties and functionalities by time-periodic drives, is a forefront of quantum physics of light-matter interaction, but limited to ideal dissipationless systems. For the Floquet engineering extended to a variety of materials, it is vital to understand the quantum states emerging in a balance of the periodic drive and energy dissipation. Here we derive the general description for nonequilibrium steady states (NESS) in periodically driven dissipative systems by focusing on the systems under high-frequency drive and time-independent Lindblad-type dissipation with the detailed balance condition. Our formula correctly describes the time-average, fluctuation, and symmetry property of the NESS, and can be computed efficiently in numerical calculations. Our approach will play fundamental roles in Floquet engineering in a broad class of dissipative quantum systems such as atoms and molecules, mesoscopic systems, and condensed matter.
We study asymmetric exclusion processes (TASEP) on a nonuniform one-dimensional ring consisting of two segments having unequal hopping rates, or {em defects}. We allow weak particle nonconservation via Langmuir kinetics (LK), that are parameterised by generic unequal attachment and detachment rates. For an extended defect, in the thermodynamic limit the system generically displays inhomogeneous density profiles in the steady state - the faster segment is either in a phase with spatially varying density having no density discontinuity, or a phase with a discontinuous density changes. Nonequilibrium phase transitions between them are controlled by the inhomogeneity and LK. The slower segment displays only macroscopically uniform bulk density profiles in the steady states, reminiscent of the maximal current phase of TASEP but with a bulk density generally different from half. With a point defect, there are low and high density spatially uniform phases as well, in addition to the inhomogeneous density profiles observed for an extended defect. In all the cases, it is argued that the the mean particle density in the steady state is controlled only by the ratio of the LK attachment and detachment rates.
310 - Jeffrey B. Weiss 2007
Motivated by stochastic models of climate phenomena, the steady-state of a linear stochastic model with additive Gaussian white noise is studied. Fluctuation theorems for nonequilibrium steady-states provide a constraint on the character of these fluctuations. The properties of the fluctuations which are unconstrained by the fluctuation theorem are investigated and related to the model parameters. The irreversibility of trajectory segments, which satisfies a fluctuation theorem, is used as a measure of nonequilibrium fluctuations. The moments of the irreversibility probability density function (pdf) are found and the pdf is seen to be non-Gaussian. The average irreversibility goes to zero for short and long trajectory segments and has a maximum for some finite segment length, which defines a characteristic timescale of the fluctuations. The initial average irreversibility growth rate is equal to the average entropy production and is related to noise-amplification. For systems with a separation of deterministic timescales, modes with timescales much shorter than the trajectory timespan and whose noise amplitudes are not asymptotically large, do not, to first order, contribute to the irreversibility statistics, providing a potential basis for dimensional reduction.
We calculate exponential growth constants describing the asymptotic behavior of several quantities enumerating classes of orientations of arrow variables on the bonds of several types of directed lattice strip graphs $G$ of finite width and arbitrarily great length, in the infinite-length limit, denoted {G}. Specifically, we calculate the exponential growth constants for (i) acyclic orientations, $alpha({G})$, (ii) acyclic orientations with a single source vertex, $alpha_0({G})$, and (iii) totally cyclic orientations, $beta({G})$. We consider several lattices, including square (sq), triangular (tri), and honeycomb (hc). From our calculations, we infer lower and upper bounds on these exponential growth constants for the respective infinite lattices. To our knowledge, these are the best current bounds on these quantities. Since our lower and upper bounds are quite close to each other, we can infer very accurate approximate values for the exponential growth constants, with fractional uncertainties ranging from $O(10^{-4})$ to $O(10^{-2})$. Further, we present exact values of $alpha(tri)$, $alpha_0(tri)$, and $beta(hc)$ and use them to show that our lower and upper bounds on these quantities are very close to these exact values, even for modest strip widths. Results are also given for a nonplanar lattice denoted $sq_d$. We show that $alpha({G})$, $alpha_0({G})$, and $beta({G})$ are monotonically increasing functions of vertex degree for these lattices. We also study the asymptotic behavior of the ratios of the quantities (i)-(iii) divided by the total number of edge orientations as the number of vertices goes to infinity. A comparison is given of these exponential growth constants with the corresponding exponential growth constant $tau({G})$ for spanning trees. Our results are in agreement with inequalities following from the Merino-Welsh and Conde-Merino conjectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا