No Arabic abstract
We present interferometric observations of the sigma Orionis triple system using the CHARA Array, NPOI, and VLTI. Using these measurements, we spatially resolve the orbit of the close spectroscopic binary (Aa,Ab) for the first time and present a revised orbit for the wide pair (A,B). Combining the visual orbits with previously published radial velocity measurements and new radial velocities measured at CTIO, we derive dynamical masses for the three massive stars in the system of M_Aa = 16.99 +/- 0.20 Msun, M_Ab = 12.81 +/- 0.18 Msun, and M_B = 11.5 +/- 1.2 Msun. The inner and outer orbits in the triple are not coplanar, with a relative inclination of 120-127 deg. The orbital parallax provides a precise distance of 387.5 +/- 1.3 pc to the system. This is a significant improvement over previous estimates of the distance to the young sigma Orionis cluster.
We aim to improve the orbital elements and determine the individual masses of the components in the triple system TWA 5. Five new relative astrometric positions in the H band were recorded with the adaptive optics system at the Very Large Telescope (VLT). We combine them with data from the literature and a measurement in the Ks band. We derive an improved fit for the orbit of TWA 5Aa-b around each other. Furthermore, we use the third component, TWA 5B, as an astrometric reference to determine the motion of Aa and Ab around their center of mass and compute their mass ratio. We find an orbital period of 6.03+/-0.01 years and a semi-major axis of 63.7+/-0.2 mas (3.2+/-0.1 AU). With the trigonometric distance of 50.1+/-1.8 pc, this yields a system mass of 0.9+/-0.1 Msun, where the error is dominated by the error of the distance. The dynamical mass agrees with the system mass predicted by a number of theoretical models if we assume that TWA5 is at the young end of the age range of the TW Hydrae association. We find a mass ratio of M_Ab / M_Aa = 1.3 +0.6/-0.4, where the less luminous component Ab is more massive. This result is likely to be a consequence of the large uncertainties due to the limited orbital coverage of the observations.
Context. HD 150136 is a triple hierarchical system and a non-thermal radio emitter. It is formed by an O3-3.5 V + O5.5-6 V close binary and a more distant O6.5-7 V tertiary. So far, only the inner orbital properties have been reliably constrained. Aims. To quantitatively understand the non-thermal emission process, accurate knowledge of the physical and orbital properties of the object is crucial. Here, we aim to investigate the orbital properties of the wide system and to constrain the inclinations of the inner and outer binaries, and with these the absolute masses of the system components. Methods. We used the PIONIER combiner at the Very Large Telescope Interferometer to obtain the very first interferometric measurements of HD 150136. We combined the interferometric observations with new and existing high resolution spectroscopic data to derive the orbital solution of the outer companion in the three-dimensional space. Results. The wide system is clearly resolved by PIONIER, with a projected separation on the plane of the sky of about 9 milli-arcsec. The best-fit orbital period, eccentricity, and inclination are 8.2 yr, 0.73 and 108 degr. We constrain the masses of the three stars of the system to 63 +/- 10, 40 +/- 6, and 33 +/- 12 Msun for the O3-3.5 V, O5.5-6 V and O6.5-7 V components. Conclusions. The dynamical masses agree within errors with the evolutionary masses of the components. Future interferometric and spectroscopic monitoring of HD 150136 should allow one to reduce the uncertainties to a few per cent only and to accurately constrain the distance to the system. This makes HD 150136 an ideal system to quantitatively test evolutionary models of high-mass stars as well as the physics of non-thermal processes occurring in O-type systems.
Joint analysis of radial velocities and position measurements of five hierarchical stellar systems is undertaken to determine elements of their inner and outer orbits and, whenever possible, their mutual inclinations. The inner and outer periods are 12.9 and 345 yr for HD 12376 (ADS 1613), 1.14 and ~1500 yr for HD 19971 (ADS 2390), 8.3 and 475 yr for HD 89795 (ADS 7338), 1.11 and 40 yr for HD 152027, 0.69 and 7.4 yr for HD 190412. The latter system with its co-planar and quasi-circular orbits belongs to the family of compact planetary-like hierarchies, while the orbits in HD 12376 have mutual inclination of 131 degrees.
In spite of its importance for the study of star formation at all mass domains, the nearby young sigma Orionis cluster still lacks a comprehensive survey for multiplicity. We try to fill that observational gap by looking for wide resolved binaries with angular separations between 0.4 and 4.0 arcsec. We search for companions to 331 catalogued cluster stellar members and candidates in public K-band UKIDSS images outside the innermost 1 arcmin, which is affected by the glare of the bright, eponymous sigma Ori multiple system, and investigate their cluster membership with colour-magnitude diagrams and previous knowledge of youth features. Of the 18 identified pairs, ten have very low individual probabilities of chance alignment (< 1 %) and are considered here as physical pairs. Four of them are new, while the other six had been discovered previously, but never investigated homogeneously and in detail. Projected physical separations and magnitude differences of the ten probably bound pairs range from 180 to 1220 au, and from 0.0 to 3.4 mag in K, respectively. Besides, we identify two cluster stars with elongated point spread functions. We determine the minimum frequency of wide multiplicity in the interval of projected physical separations s = 160-1600 au in sigma Orionis at 3.0^{+1.2}_{-1.1} %. We discover a new Lindroos system, find that massive and X-ray stars tend to be in pairs or trios, conclude that multiplicity truncates circumstellar discs and enhances X-ray emission, and ascribe a reported lithium depletion in a young star to unresolved binarity in spectra of moderate resolution. When accounting for all know multiples, including spectroscopic binaries, the minimum frequency of multiplicity increases to about 10 %, which implies that of the order of 80-100 unknown multiple systems still await discovery in sigma Orionis.
We present a deep I,Z photometric survey covering a total area of 1.12 deg^{2} of the Sigma Orionis cluster (Icompl=22 and Zcompl=21.5mag). From I, I-Z color-magnitude diagrams we have selected 153 candidates that fit the previously known sequence of the cluster. Using J-band photometry, we find that 124 of the 151 candidates follow the previously known infrared photometric sequence of the cluster and are probably members. We have studied the spatial distribution of these candidates and found that there are objects located at distances greater than 30 arcmin to the north and west of Sigma Orionis that probably belong to different populations of the Orions Belt. For the 102 bona fide Sigma Orionis cluster member candidates, we find that the radial surface density can be represented by a decreasing exponential function (sigma = sigma_0 e^{-r/r_0}) with a central density of sigma_0=0.23+/-0.03 object/arcmin^{2} and a characteristic radius of r_0=9.5+/-0.7 arcmin. From a statistical comparison with Monte Carlo simulations, we conclude that the spatial distribution of the cluster member candidates is compatible with a Poissonian distribution and, hence, they are not mainly forming aggregations or sub-clustering. Using near-infrared JHK-band data from 2MASS and UKIDSS and mid-infrared data from IRAC/Spitzer, we find that 5-9 % of the brown dwarf candidates in the Sigma Orionis cluster have K-band excesses and 31+/-7 % of them show mid-infrared excesses at wavelengths longer than 5.8 microns, which are probably related to the presence of disks. We have also calculated the initial mass spectrum (dN/dm) of Sigma Orionis from very low mass stars (0.10 Msol) to the deuterium-burning mass limit (0.012-0.013 Msol). This is a rising function toward lower masses and can be represented by a power-law distribution (dN/dm = m^{-alpha}) with an exponent alpha of 0.7+/-0.3 for an age of 3 Myr.