We use gauge-gravity duality to compute entanglement entropy in a non-conformal background with an energy scale $Lambda$. At zero temperature, we observe that entanglement entropy decreases by raising $Lambda$. However, at finite temperature, we realize that both $frac{Lambda}{T}$ and entanglement entropy rise together. Comparing entanglement entropy of the non-conformal theory, $S_{A(N)}$, and of its conformal theory at the $UV$ limit, $ S_{A(C)}$, reveals that $S_{A(N)}$ can be larger or smaller than $S_{A(C)}$, depending on the value of $frac{Lambda}{T}$.