No Arabic abstract
The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z<2) cluster, (z<4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-$lambda$ observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z>1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
The main goal of this study is to investigate the LF of a sample of 142 X-ray selected clusters, with spectroscopic redshift confirmation and a well defined selection function, spanning a wide redshift and mass range, and to test the LF dependence on cluster global properties, in a homogeneous and unbiased way. Our study is based on the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) photometric galaxy catalogue,associated with photometric redshifts. We constructed LFs inside a scaled radius using a selection in photometric redshift around the cluster spectroscopic redshift in order to reduce projection effects. The width of the photometric redshift selection was carefully determined to avoid biasing the LF and depended on both the cluster redshift and the galaxy magnitudes. The purity was then enhanced by applying a precise background subtraction. We constructed composite luminosity functions (CLFs) by stacking the individual LFs and studied their evolution with redshift and richness, analysing separately the brightest cluster galaxy (BCG) and non-BCG members. We fitted the dependences of the CLFs and BCG distributions parameters with redshift and richness conjointly in order to distinguish between these two effects. We find that the usual photometric redshift selection methods can bias the LF estimate if the redshift and magnitude dependence of the photometric redshift quality is not taken into account. Our main findings concerning the evolution of the galaxy luminosity distribution with redshift and richness are that, in the inner region of clusters and in the redshift-mass range we probe (about $0<z<1$ and $10^{13} M_{odot}<M_{500}<5times10^{14}M_{odot}$), the bright part of the LF (BCG excluded) does not depend much on mass or redshift except for its amplitude, whereas the BCG luminosity increases both with redshift and richness, and its scatter decreases with redshift.
The Arecibo L-Band Feed Array Zone of Avoidance (ALFA ZOA) Deep Survey is the deepest and most sensitive blind Hi survey undertaken in the ZOA. ALFA ZOA Deep will cover about 300 square degrees of sky behind the Galactic plane in both the inner (30 deg < l < 75 deg; b < |2 deg|) and outer (175 deg < l < 207 deg; -2 deg < b < +1 deg) Galaxy, using the Arecibo Radio Telescope. First results from the survey have found 61 galaxies within a 15 square degree area centered on l = 192 deg and b = -2 deg. The survey reached its expected sensitivity of rms = 1 mJy at 9 km/s channel resolution, and is shown to be complete above integrated flux, F_HI = 0.5 Jy km/s. The positional accuracy of the survey is 28 arcsec and detections are found out to a recessional velocity of nearly 19,000 km/s. The survey confirms the extent of the Orion and Abell 539 clusters behind the plane of the Milky Way and discovers expansive voids, at 10,000 km/s and 18,000 km/s. 26 detections (43%) have a counterpart in the literature, but only two of these have known redshift. Counterparts are 20% less common beyond v_hel = 10,000 km/s and 33% less common at extinctions higher than AB = 3.5 mag. ALFA ZOA Deep survey is able to probe large scale structure beyond redshifts that even the most modern wide-angle surveys have been able to detect in the Zone of Avoidance at any wavelength.
Context. The XMM-XXL survey uses observations from XMM-Newton to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z $>$ 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, nine are free from significant point source contamination, either having no previously unresolved sources detected by Chandra, or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically-selected cluster candidates associated with faint XXL sources that were not classed as clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z $>$ 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.
We present constraints on the abundance of carbon-monoxide in the early Universe from the CO Power Spectrum Survey (COPSS). We utilize a data set collected between 2005 and 2008 using the Sunyaev-Zeldovich Array (SZA), which were previously used to measure arcminute-scale fluctuations of the CMB. This data set features observations of 44 fields, covering an effective area of 1.7 square degrees, over a frequency range of 27 to 35 GHz. Using the technique of intensity mapping, we are able to probe the CO(1-0) transition, with sensitivity to spatial modes between $k=0.5{-}2 h,textrm{Mpc}^{-1}$ over a range in redshift of $z=2.3{-}3.3$, spanning a comoving volume of $3.6times10^{6} h^{-3},textrm{Mpc}^{3}$. We demonstrate our ability to mitigate foregrounds, and present estimates of the impact of continuum sources on our measurement. We constrain the CO power spectrum to $P_{textrm{CO}}<2.6times10^{4} mutextrm{K}^{2} (h^{-1},textrm{Mpc})^{3}$, or $Delta^{2}_{textrm{CO}}(k! = ! 1 h,textrm{Mpc}^{-1})<1.3 times10^{3} mutextrm{K}^{2}$, at $95%$ confidence. This limit resides near optimistic predictions for the CO power spectrum. Under the assumption that CO emission is proportional to halo mass during bursts of active star formation, this corresponds to a limit on the ratio of $textrm{CO}(1{-}0)$ luminosity to host halo mass of $A_{textrm{CO}}<1.2times10^{-5} L_{odot} M_{odot}^{-1}$. Further assuming a Milky Way-like conversion factor between CO luminosity and molecular gas mass ($alpha_{textrm{CO}}=4.3 M_{odot} (textrm{K} textrm{km} textrm{s}^{-1} textrm{pc}^{-2})^{-1}$), we constrain the global density of molecular gas to $rho_{zsim3}(M_{textrm{H}_{2}})leq 2.8 times10^{8} M_{odot} textrm{Mpc}^{-3}$.
Radio-emitting jets might be one of the main ingredients shaping the evolution of massive galaxies in the Universe since early cosmic times. However, identifying early radio active galactic nuclei (AGN) and confirming this scenario has been hard to accomplish, with studies of samples of radio AGN hosts at z>2 becoming routinely possible only recently. With the above in mind, we have carried out a survey with the Atacama Compact Array (ACA, or Morita Array) at 1.3 mm (rms=0.15 mJy) of 36 high-redshift radio AGN candidates found within 3.9deg2 in the ELAIS-S1 field. The work presented here describes the survey and showcases a preliminary set of results. The selection of the sample was based on three criteria making use of infrared (IR) and radio fluxes only. The criterion providing the highest selection rate of high-redshift sources (86% at z>0.8) is one combining an IR colour cut and radio flux cut (S(5.8um)/S(3.6um)>1.3 and S(1.4GHz)>1mJy). Among the sample of 36 sources, 16 show a millimetre (mm) detection. In eight of these cases, the emission has a non-thermal origin. A zsp=1.58 object, with a mm detection of non-thermal origin, shows a clear spatial offset between the jet-dominated mm continuum emission and that of the hosts molecular gas, as traced by serendipitously detected CO(5-4) emission. Among the objects with serendipitous line detections there is a source with a narrow jet-like region, as revealed by CS(6-5) emission stretching 20kpc out of the host galaxy.