Do you want to publish a course? Click here

Dissecting a SN impostors circumstellar medium: MUSEing about the SHAPE of eta Cars outer ejecta

117   0   0.0 ( 0 )
 Added by Andrea Mehner
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. The structural inhomogeneities and kinematics of massive star nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of eta Car outside its famous Homunculus nebula. Methods. We carried out the first large-scale integral field unit observations of eta Car in the optical, covering a field of view of 1x1 centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of eta Cars outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results. The largest coherent structure in eta Cars outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions. The SHAPE modeling of the MUSE observations indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell just outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future radiation-hydrodynamics simulations. Such a comparison may shed light on the yet elusive physical mechanism responsible for eta Car-like eruptions.



rate research

Read More

59 - Kerstin Weis 2004
The nebula around eta Carinae consists of two distinct parts: the Homunculus and the outer ejecta. The outer ejecta are mainly a collection of numerous filaments, shaped irregularly and distributed over an area of 1arcminx1arcmin. While the Homunculus is mainly a reflection nebula, the outer ejecta are an emission nebula. Kinematic analysis of the outer ejecta (as the Homunculus) show their bi-directional expansion. Radial velocities in the outer ejecta reach up to >2000km/s and the gas gives rise to X-ray emission. The temperature of the X-ray gas is of the order of 0.65 keV. These shock temperatures indicate velocities of the shocking gas of 750km/s, about what was found for the average expansion velocity of the outer ejecta. HST/STIS data from the strings, long, highly collimated structures in the outer ejecta, show that the electron density of the strings is of the order of 10^4cm^-3 Other structures in the outer ejecta show similar values. String 1 has a mass of about 3 10^-4M_sun, a density gradient along the strings or a denser leading head was not found.
We report optical and near-infrared observations of SN 2012ca with the Public ESO Spectroscopy Survey of Transient Objects (PESSTO), spread over one year since discovery. The supernova (SN) bears many similarities to SN 1997cy and to other events classified as Type IIn but which have been suggested to have a thermonuclear origin with narrow hydrogen lines produced when the ejecta impact a hydrogen-rich circumstellar medium (CSM). Our analysis, especially in the nebular phase, reveals the presence of oxygen, magnesium and carbon features. This suggests a core collapse explanation for SN2012ca, in contrast to the thermonuclear interpretation proposed for some members of this group. We suggest that the data can be explained with a hydrogen and helium deficient SN ejecta (Type I) interacting with a hydrogen-rich CSM, but that the explosion was more likely a Type Ic core-collapse explosion than a Type Ia thermonuclear one. This suggests two channels (both thermonuclear and stripped envelope core-collapse) may be responsible for these SN 1997cy-like events.
63 - Kerstin Weis 2002
Eta Carinae is a very luminous and unstable evolved star. Outflowing material ejected during the stars giant eruption in 1843 surrounds it as a nebula which consists of an inner bipolar region(the Homunculus) and the Outer Ejecta. The outer ejecta is very filamentary and shaped irregularly. Kinematic analysis, however, shows a regular bi-directional expansion despite of the complex morphology. Radial velocities in the outer ejecta reach up to 2000 kms/s and give rise to X-ray emission first detected by ROSAT. We will present a detailed study of the outer ejecta based on HST images, high-resolution echelle spectra for kinematic studies, images from CHANDRA/ACIS and HST-STIS spectra.
Eta Car is one of the most intriguing luminous blue variables in the Galaxy. Observations and models at different wavelengths suggest a central binary with a 5.54 yr period residing in its core. 2D and 3D radiative transfer and hydrodynamic simulations predict a primary with a dense and slow stellar wind that interacts with the faster and lower density wind of the secondary. The wind-wind collision scenario suggests that the secondarys wind penetrates the primarys wind creating a low-density cavity in it, with dense walls where the two winds interact. We aim to trace the inner ~5-50 au structure of Eta Cars wind-wind interaction, as seen through BrG and, for the first time, through the He I 2s-2p line. We have used spectro-interferometric observations with GRAVITY at the VLTI. Our modeling of the continuum allows us to estimate its FWHM angular size close to 2 mas and an elongation ratio of 1.06 +/- 0.05 over a PA = 130 +/- 20 deg. Our CMFGEN modeling helped us to confirm that the role of the secondary should be taken into account to properly reproduce the observed BrG and He I lines. Chromatic images across BrG reveal a southeast arc-like feature, possibly associated to the hot post-shocked winds flowing along the cavity wall. The images of He I 2s-2p served to constrain the 20 mas structure of the line-emitting region. The observed morphology of He I suggests that the secondary is responsible for the ionized material that produces the line profile. Both the BrG and the He I 2s-2p maps are consistent with previous hydrodynamical models of the colliding wind scenario. Future dedicated simulations together with an extensive interferometric campaign are necessary to refine our constraints on the wind and stellar parameters of the binary, which finally will help us predict the evolutionary path of Eta Car.
Previous submillimetre (submm) observations detected 0.7 solar masses of cool dust emission around the Luminous Blue Variable (LBV) star Eta Carinae. These observations were hindered by the low declination of Eta Carinae and contamination from free-free emission orginating from the stellar wind. Here, we present deep submm observations with LABOCA at 870um, taken shortly after a maximum in the 5.5-yr radio cycle. We find a significant difference in the submm flux measured here compared with the previous measurement: the first indication of variability at submm wavelengths. A comparison of the submm structures with ionised emission features suggests the 870um is dominated by emission from the ionised wind and not thermal emission from dust. We estimate 0.4 +/- 0.1 solar masses of dust surrounding Eta Carinae. The spatial distribution of the submm emission limits the mass loss to within the last thousand years, and is associated with mass ejected during the great eruptions and the pre-outburst LBV wind phase; we estimate that Eta Carinae has ejected > 40 solar masses of gas within this timescale.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا