In this paper, we study the possibility of an inhomogeneous quark condensate in the 1+1 dimensional Nambu-Jona-Lasinio model in the large-$N_c$ limit at finite temperature $T$ and quark chemical potential $mu$ using dimensional regularization. The phase diagram in the $mu$--$T$ plane is mapped out. At zero temperature, an inhomogeneous phase with a chiral-density wave exists for all values of $mu>mu_c$. Performing a Ginzburg-Landau analysis, we show that in the chiral limit, the critical point and the Lifschitz point coincide. We also consider the competition between a chiral-density wave and a constant pion condensate at finite isospin chemical potential $mu_I$. The phase diagram in the $mu_I$--$mu$ plane is mapped out and shows a rich phase structure.