Do you want to publish a course? Click here

Dynamics of ellipsoidal tracers in swimming algal suspensions

82   0   0.0 ( 0 )
 Added by Xiang Cheng
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Enhanced diffusion of passive tracers immersed in active fluids is a universal feature of active fluids and has been extensively studied in recent years. Similar to microrheology for equilibrium complex fluids, the unusual enhanced particle dynamics reveal intrinsic properties of active fluids. Nevertheless, previous studies have shown that the translational dynamics of spherical tracers are qualitatively similar, independent of whether active particles are pushers or pullers---the two fundamental classes of active fluids. Is it possible to distinguish pushers from pullers by simply imaging the dynamics of passive tracers? Here, we investigated the diffusion of isolated ellipsoids in algal C. reinhardtii suspensions---a model for puller-type active fluids. In combination with our previous results on pusher-type E. coli suspensions [Peng et al., Phys. Rev. Lett. 116, 068303 (2016)], we showed that the dynamics of asymmetric tracers show a profound difference in pushers and pullers due to their rotational degree of freedom. Although the laboratory-frame translation and rotation of ellipsoids are enhanced in both pushers and pullers, similar to spherical tracers, the anisotropic diffusion in the body frame of ellipsoids shows opposite trends in the two classes of active fluids. An ellipsoid diffuses fastest along its major axis when immersed in pullers, whereas it diffuses slowest along the major axis in pushers. This striking difference can be qualitatively explained using a simple hydrodynamic model. In addition, our study on algal suspensions reveals that the influence of the near-field advection of algal swimming flows on the translation and rotation of ellipsoids shows different ranges and strengths. Our work provides not only new insights into universal organizing principles of active fluids, but also a convenient tool for detecting the class of active particles.



rate research

Read More

Tracer particles immersed in suspensions of biological microswimmers such as E. coli or Chlamydomonas display phenomena unseen in conventional equilibrium systems, including strongly enhanced diffusivity relative to the Brownian value and non-Gaussian displacement statistics. In dilute, 3-dimensional suspensions, these phenomena have typically been explained by the hydrodynamic advection of point tracers by isolated microswimmers, while, at higher concentrations, correlations between pusher microswimmers such as E. coli can increase the effective diffusivity even further. Anisotropic tracers in active suspensions can be expected to exhibit even more complex behaviour than spherical ones, due to the presence of a nontrivial translation-rotation coupling. Using large-scale lattice Boltzmann simulations of model microswimmers described by extended force dipoles, we study the motion of ellipsoidal point tracers immersed in 3-dimensional microswimmer suspensions. We find that the rotational diffusivity of tracers is much less affected by swimmer-swimmer correlations than the translational diffusivity. We furthermore study the anisotropic translational diffusion in the particle frame and find that, in pusher suspensions, the diffusivity along the ellipsoid major axis is higher than in the direction perpendicular to it, albeit with a smaller ratio than for Brownian diffusion. Thus, we find that far field hydrodynamics cannot account for the anomalous coupling between translation and rotation observed in experiments, as was recently proposed. Finally, we study the probability distributions (PDFs) of translational and rotational displacements. In accordance with experimental observations, for short observation times we observe strongly non-Gaussian PDFs that collapse when rescaled with their variance, which we attribute to the ballistic nature of tracer motion at short times.
Despite the omnipresence of colloidal suspensions, little is known about the influence of shape on phase transformations, especially in nonequilibrium. To date, real-space imaging results are limited to systems composed of spherical colloids. In most natural and technical systems, however, particles are non-spherical and their structural dynamics are determined by translational and rotational degrees of freedom. Using confocal microscopy, we reveal that suspensions of ellipsoidal colloids form an unexpected state of matter, a liquid glass in which rotations are frozen while translations remain fluid. Image analysis unveils hitherto unknown nematic precursors as characteristic structural elements of this state. The mutual obstruction of these ramified clusters prevents liquid crystalline order. Our results give unique insight into the interplay between local structures and phase transformations. This helps to guide applications such as self-assembly of colloidal superstructures and also gives first evidence of the importance of shape on the glass transition in general.
We perform detailed computational and experimental measurements of the driven dynamics of a dense, uniform suspension of sedimented microrollers driven by a magnetic field rotating around an axis parallel to the floor. We develop a lubrication-corrected Brownian Dynamics method for dense suspensions of driven colloids sedimented above a bottom wall. The numerical method adds lubrication friction between nearby pairs of particles, as well as particles and the bottom wall, to a minimally-resolved model of the far-field hydrodynamic interactions. Our experiments combine fluorescent labeling with particle tracking to trace the trajectories of individual particles in a dense suspension, and to measure their propulsion velocities. Previous computational studies [B. Sprinkle et al., J. Chem. Phys., 147, 244103, 2017] predicted that at sufficiently high densities a uniform suspension of microrollers separates into two layers, a slow monolayer right above the wall, and a fast layer on top of the bottom layer. Here we verify this prediction, showing good quantitative agreement between the bimodal distribution of particle velocities predicted by the lubrication-corrected Brownian Dynamics and those measured in the experiments. The computational method accurately predicts the rate at which particles are observed to switch between the slow and fast layers in the experiments. We also use our numerical method to demonstrate the important role that pairwise lubrication plays in motility-induced phase separation in dense monolayers of colloidal microrollers, as recently suggested for suspensions of Quincke rollers [D. Geyer et al., Physical Review X, 9(3), 031043, 2019].
Self-propelled colloids constitute an important class of intrinsically non-equilibrium matter. Typically, such a particle moves ballistically at short times, but eventually changes its orientation, and displays random-walk behavior in the long-time limit. Theory predicts that if the velocity of non-interacting swimmers varies spatially in 1D, $v(x)$, then their density $rho(x)$ satisfies $rho(x) = rho(0)v(0)/v(x)$, where $x = 0$ is an arbitrary reference point. Such a dependence of steady-state $rho(x)$ on the particle dynamics, which was the qualitative basis of recent work demonstrating how to `paint with bacteria, is forbidden in thermal equilibrium. We verify this prediction quantitatively by constructing bacteria that swim with an intensity-dependent speed when illuminated. A spatial light pattern therefore creates a speed profile, along which we find that, indeed, $rho(x)v(x) = mathrm{constant}$, provided that steady state is reached.
We derive equations of motion for the mean-squared displacement (MSD) of an active Brownian particle (ABP) in a crowded environment modeled by a dense system of passive Brownian particles, and of a passive tracer particle in a dense active-Brownian particle system, using a projection-operator scheme. The interaction of the tracer particle with the dense host environment gives rise to strong memory effects. Evaluating these approximately in the framework of a recently developed mode-coupling theory for the glass transition in active Brownian particles (ABP-MCT), we discuss the various regimes of activity-induced super-diffusive motion and density-induced sub-diffusive motion. The predictions of the theory are shown to be in good agreement with results from an event-driven Brownian dynamics simulation scheme for the dynamics of two-dimensional active Brownian hard disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا