No Arabic abstract
We propose to sharpen the weak gravity conjecture by the statement that, except for BPS states in a supersymmetric theory, the gravitational force is strictly weaker than any electric force and provide a number of evidences for this statement. Our conjecture implies that any non-supersymmetric anti-de Sitter vacuum supported by fluxes must be unstable, as is the case for all known attempts at such holographic constructions.
In recent times, a considerable effort has been dedicated to identify certain conditions -- the so-called swampland conjectures -- with an eye on identifying effective theories which have no consistent UV-completions in string theory. In this paper, we examine the anti-de Sitter vacua corresponding to solutions which arise from purely non-perturbative contributions to the superpotential and show that these solutions satisfy the (axionic) weak gravity conjecture and the AdS-moduli scale separation conjecture. We also sketch out their advantages over other constructions.
We study aspects of anti-de Sitter space in the context of the Swampland. In particular, we conjecture that the near-flat limit of pure AdS belongs to the Swampland, as it is necessarily accompanied by an infinite tower of light states. The mass of the tower is power-law in the cosmological constant, with a power of $frac{1}{2}$ for the supersymmetric case. We discuss relations between this behaviour and other Swampland conjectures such as the censorship of an unbounded number of massless fields, and the refined de Sitter conjecture. Moreover, we propose that changes to the AdS radius have an interpretation in terms of a generalised distance conjecture which associates a distance to variations of all fields. In this framework, we argue that the distance to the $Lambda rightarrow 0$ limit of AdS is infinite, leading to the light tower of states. We also discuss implications of the conjecture for de Sitter space.
We compute holographic complexity for the non-supersymmetric Janus deformation of AdS$_5$ according to the volume conjecture. The result is characterized by a power-law ultraviolet divergence. When a ball-shaped region located around the interface is considered, a sub-leading logarithmic divergent term and a finite part appear in the corresponding subregion volume complexity. Using two different prescriptions to regularize the divergences, we find that the coefficient of the logarithmic term is universal.
The seven and nine dimensional geometries associated with certain classes of supersymmetric $AdS_3$ and $AdS_2$ solutions of type IIB and D=11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in $2n+2$ dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for $nge 3$, we show that when the geometry in $2n+2$ dimensions is a cone we obtain a class of geometries in $2n+1$ dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when $n=3,4$, respectively. We also consider various ansatz for the geometries and construct infinite classes of explicit examples for all $n$.
A number of Swampland conjectures and in particular the Trans-Planckian Censorship Conjecture (TCC) suggest that de Sitter space is highly unstable if it exists at all. In this paper we construct effective theories of scalars rolling on potentials which are dual to a chain of short-lived dS spaces decaying from one to the next through a cascade of non-perturbative nucleation of bubbles. We find constraints on the effective potential resulting from various swampland criteria, including TCC, Weak Gravity Conjecture and Distance Conjecture. Surprisingly we find that TCC essentially incorporates all the other ones, and leads to a subclass of possible dual effective potentials. These results marginally rule out emergence of eternal inflation in the dual effective theory. We discuss some cosmological implications of our observations.