No Arabic abstract
The unifying feature of glass formers (such as polymers, supercooled liquids, colloids, granulars, spin glasses, superconductors, ...) is a sluggish dynamics at low temperatures. Indeed, their dynamics is so slow that thermal equilibrium is never reached in macroscopic samples: in analogy with living beings, glasses are said to age. Here, we show how to relate experimentally relevant quantities with the experimentally unreachable low-temperature equilibrium phase. We have performed a very accurate computation of the non-equilibrium fluctuation-dissipation ratio for the three-dimensional Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. The resulting quantitative statics-dynamics dictionary, based on observables that can be measured with current experimental methods, could allow the experimental exploration of important features of the spin-glass phase without uncontrollable extrapolations to infinite times or system sizes.
The statics-dynamics correspondence in spin glasses relate non-equilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.
We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the mean-field regime). The system is quenched to a temperature well below the transition temperature $T_c$ and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length $xi(t)$ agrees quantitatively with the predictions of a static theory, the metastate, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent $z(T)$ defined by $xi(t) propto t^{1/z(T)}$ and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.
Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect. Here we study quantum dynamics of an isolated 1d spin-glass under application of a transverse field. At high energy densities, the system is ergodic, relaxing via resonance avalanche mechanism, that is also responsible for the destruction of MBL in non-glassy systems with power-law interactions. At low energy densities, the interaction-induced fields obtain a power-law soft gap, making the resonance avalanche mechanism inefficient. This leads to the persistence of the spin-glass order, as demonstrated by resonance analysis and by numerical studies. A small fraction of resonant spins forms a thermalizing system with long-range entanglement, making this regime distinct from the conventional MBL. The model considered can be realized in systems of trapped ions, opening the door to investigating slow quantum dynamics induced by glassiness.
We study numerically the nonequilibrium dynamics of the Ising Spin Glass, for a time that spans eleven orders of magnitude, thus approaching the experimentally relevant scale (i.e. {em seconds}). We introduce novel analysis techniques that allow to compute the coherence length in a model-independent way. Besides, we present strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible with non-coarsening behavior.
We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the transition and the value of the critical exponents. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the random permutation Potts glass.