Do you want to publish a course? Click here

Inter-layer synchronization in non-identical multi-layer networks

141   0   0.0 ( 0 )
 Added by I. Leyva
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inter-layer synchronization is a dynamical state occurring in multi-layer networks composed of identical nodes. The state corresponds to have all layers synchronized, with nodes in each layer which do not necessarily evolve in unison. So far, the study of such a solution has been restricted to the case in which all layers had an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship between the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of two multiplexed identical layers of electronic circuits in a chaotic regime, we study the loss of inter-layer synchronization as a function of the betweenness centrality of the removed links.



rate research

Read More

It is known that intra-layer adaptive coupling among connected oscillators instigates explosive synchronization (ES) in multilayer networks. Taking an altogether different cue in the present work, we consider inter-layer adaptive coupling in a multiplex network of phase oscillators and show that the scheme gives rise to ES with an associated hysteresis irrespective of the network architecture of individual layers. The hysteresis is shaped by the inter-layer coupling strength and the frequency mismatch between the mirror nodes. We provide rigorous mean-field analytical treatment for the measure of global coherence and manifest they are in a good match with respective numerical assessments. Moreover, the analytical predictions provide a complete insight into how adaptive multiplexing suppresses the formation of a giant cluster, eventually giving birth to ES. The study will help in spotlighting the role of multiplexing in the emergence of ES in real-world systems represented by multilayer architecture. Particularly, it is relevant to those systems which have limitations towards change in intra-layer coupling strength.
This Letter investigates the nature of synchronization in multilayered and multiplexed populations in which the interlayer interactions are randomly pinned. First, we show that a multilayer network constructed by setting up all-to-all interlayer connections between the two populations leads to explosive synchronization in the two populations successively, leading to the coexistence of coherent and incoherent populations forming chimera states. Second, a multiplex formation of the two populations in which only the mirror nodes are interconnected espouses explosive transitions in the two populations concurrently. The emergence of explosive synchronization is substantiated with rigorous mean-field calculations demonstrating the existence of a bistable region. The random pinning in the interlayer interactions concerns the practical problems where the impact of dynamics of one network on that of other interconnected networks remains elusive, as is the case for many real-world systems.
Synchronization has been the subject of intense research during decades mainly focused on determining the structural and dynamical conditions driving a set of interacting units to a coherent state globally stable. However, little attention has been paid to the description of the dynamical development of each individual networked unit in the process towards the synchronization of the whole ensemble. In this paper, we show how in a network of identical dynamical systems, nodes belonging to the same degree class differentiate in the same manner visiting a sequence of states of diverse complexity along the route to synchronization independently on the global network structure. In particular, we observe, just after interaction starts pulling orbits from the initially uncoupled attractor, a general reduction of the complexity of the dynamics of all units being more pronounced in those with higher connectivity. In the weak coupling regime, when synchronization starts to build up, there is an increase in the dynamical complexity whose maximum is achieved, in general, first in the hubs due to their earlier synchronization with the mean field. For very strong coupling, just before complete synchronization, we found a hierarchical dynamical differentiation with lower degree nodes being the ones exhibiting the largest complexity departure. We unveil how this differentiation route holds for several models of nonlinear dynamics including toroidal chaos and how it depends on the coupling function. This study provides new insights to understand better strategies for network identification and control or to devise effective methods for network inference.
We report the study of sudden transitions or tipping in a collection of systems induced due to multiplexing with another network of systems. The emergent dynamics of oscillators on one layer can undergo a sudden transition to steady state due to indirect coupling with a shared environment, mean field couplings and conjugate couplings among them. In all these cases, when multiplexed with another set of similar systems, the tipping phenomena are induced on the second layer also with a similar pattern of behaviour. We consider van der Pol oscillator as nodal dynamics with various network topologies like scale free and regular networks with local and nonlocal couplings. We also report how the coupling topology influences the nature of transitions on both layers, under multiplexing.
A horizontal flow of two immiscible fluid layers with different densities, viscosities and thicknesses, subject to vertical gravitational forces and with an insoluble surfactant present at the interface, is investigated. The base Couette flow is driven by the horizontal motion of the channel walls. Linear and nonlinear stages of the (inertialess) surfactant and gravity dependent long-wave instability are studied using the lubrication approximation, which leads to a system of coupled nonlinear evolution equations for the interface and surfactant disturbances. The linear stability is determined by an eigenvalue problem for the normal modes. The growth rates and the amplitudes of disturbances of the interface, surfactant, velocities, and pressures are found analytically. For each wavenumber, there are two active normal modes. For each mode, the instability threshold conditions in terms of the system parameters are determined. In particular, it transpires that for certain parametric ranges, even arbitrarily strong gravity cannot completely stabilize the flow. The correlations of vorticity-thickness phase differences with instability, present when the gravitational effects are neglected, are found to break down when gravity is important. The physical mechanisms of instability for the two modes are explained with vorticity playing no role in them. Unlike the semi-infinite case that we previously studied, a small-amplitude nonlinear saturation of the surfactant instability is possible in the absence of gravity. For certain parametric ranges, the interface deflection is governed by a decoupled Kuramoto-Sivashinsky equation, which provides a source term for a linear convection-diffusion equation governing the surfactant concentration. The full numerics confirm the prediction that, along with the interface, the surfactant wave is chaotic, but the ratio of the two chaotic waves is constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا