Do you want to publish a course? Click here

Electric-field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments

198   0   0.0 ( 0 )
 Added by Dustin Hite
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.



rate research

Read More

79 - H.Z. Jooya , K.S. McKay , E. Kim 2018
The variation of the work function upon carbon adsorption on the reconstructed Au(110) surface is measured experimentally and compared to density functional calculations. The adsorption dynamics is simulated with ab-initio molecular dynamics techniques. The contribution of various energetically available adsorption sites on the deposition process is analyzed, and the work function behavior with carbon coverage is explained by the resultant electron charge density distributions.
We study adsorption sites of a single Xe adatom on Nb(110) surface using a density functional theory approach: The on-top site is the most favorable position for the adsorption. We compare the binding features of the present study to earlier studies of a Xe adatom on close-packed (111) surface of face-centered cubic metals. The different features are attributed through a microscopic picture to the less than half filled d-states in Nb.
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different with topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
First-principles calculations based on density functional theory and the pseudopotential method have been used to investigate the energetics of H$_2$O adsorption on the (110) surface of TiO$_2$ and SnO$_2$. Full relaxation of all atomic positions is performed on slab systems with periodic boundary conditions, and the cases of full and half coverage are studied. Both molecular and dissociative (H$_2$O $rightarrow$ OH$^-$ + H$^+$) adsorption are treated, and allowance is made for relaxation of the adsorbed species to unsymmetrical configurations. It is found that for both TiO$_2$ and SnO$_2$ an unsymmetrical dissociated configuration is the most stable. The symmetrical molecularly adsorbed configuration is unstable with respect to lowering of symmetry, and is separated from the fully dissociated configuration by at most a very small energy barrier. The calculated dissociative adsorption energies for TiO$_2$ and SnO$_2$ are in reasonable agreement with the results of thermal desorption experiments. Calculated total and local electronic densities of states for dissociatively and molecularly adsorbed configurations are presented and their relation with experimental UPS spectra is discussed.
151 - Kangtai Sun , Zhibin Gao , 2021
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-based models. Moreover, previous microscopic theory was found unable to explain large thermal Hall conductivity obtained by experiments in strontium titanate (STO). Therefore, as a first attempt to bridge this gap, we implement first-principles calculations to explore the PHE in real materials. Our work provides a new benchmark of the PHE in sodium chloride (NaCl) under a large external magnetic field. Moreover, we demonstrate our results in barium titanate (BTO), and discuss the results in STO in detail about their deviation from experiments. As a possible future direction, we further propose that the inner electronic Berry curvature plays an important role in the PHE in STO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا