No Arabic abstract
We present a microscopic study of superconductivity in OsB2 , and discuss the origin and characteristic length scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations to reveal that OsB2 is a distinctly type-I superconductor with very low Ginzburg-Landau parameter kappa - a rare property among compound materials. We show that the found coherence length and penetration depth corroborate the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed solely to a two-gap nature of superconductivity.
Single crystals of NbGe$_{2}$ which crystallize in a noncentrosymmetric hexagonal structure with chirality are synthesized and their superconductivity is investigated. Type-I superconductivity is confirmed by dc magnetization, field-induced second-to first-order phase transition in specific heat, and a small Ginzburg-Landau parameter $kappa_{GL}=0.12$. The isothermal magnetization measurements show that there is a crossover from type-I to type-II/1 superconductivity with decreasing temperature and an unusually enhanced surface superconducting critical field ($H_{c3}$) is discovered. The band structure calculations indicate the presence of Kramer-Weyl nodes near the Fermi level. These observations demonstrate that NbGe$_{2}$ is an interesting and rare example involving the possible interplay of type-I superconductivity, noncentrosymmetric structure and topological properties.
When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature $T_c$ often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below $T_c$ is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points showing that the superfluid density in these nodal superconductors universally exhibit, unlike the expected $T$-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this non-integer power-law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta $bm{k}$ close to the nodes in the superconducting energy gap $Delta(bm{k})$. We suggest that such `nodal criticality may have an impact on low-energy properties of quantum critical superconductors.
Dome-shape superconductivity phase diagram can commonly be observed in cuprate and iron-based systems via tuning parameters such as charge carrier doping, pressure, bond angle, and etc. We report doping electrons from transition-metal elements (TM = Co, Ni) substitution can induce high-Tc superconductivity around 35 K in Ca0.94La0.06Fe2As2, which emerges abruptly before the total suppression of the innate spin-density-wave/anti-ferromagnetism (SDW/AFM) state. Unexpectedly, the onset critical temperature for the high-Tc superconductivity stays constant for a wide range of TM doping. Possible extrinsic factors like phase separation, chemical inhomogeneity, and charge carrier cancelation effect are all excluded. This anomalous charge carrier density independent SC is very similar to the interface superconductivity in La2-xSrxCuO4-La2CuO4 bilayer system. The further verified two-dimensional (2D) nature of superconductivity by the Tinkhams angular-dependent critical field model as well as by the angle-resolved magneto-resistance measurements jointly supports the idea of interfacial effect induced high-Tc superconductivity.
SrTiO$_3$ exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature mbox{$T_mathrm{c} approx 0.4$~K}. Using microwave stripline resonators at frequencies from 2 to 23~GHz and temperatures down to 0.02~K, we probe the low-energy optical response of superconducting SrTiO$_3$ with charge carrier concentration from 0.3 to $2.2times 10^{20}$~cm$^{-3}$, covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap $2Delta$ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO$_3$. Furthermore, we determine $T_mathrm{c}$, $2Delta$, and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.
The superconductor PdTe$_2$ was recently classified as a Type II Dirac semimetal, and advocated to be an improved platform for topological superconductivity. Here we report magnetic and transport measurements conducted to determine the nature of the superconducting phase. Surprisingly, we find that PdTe$_2$ is a Type I superconductor with $T_c = 1.64$ K and a critical field $mu_0 H_c (0) = 13.6$ mT. Our crystals also exhibit the intermediate state as demonstrated by the differential paramagnetic effect. For $H > H_c$ we observe superconductivity of the surface sheath. This calls for a close examination of superconductivity in PdTe$_2$ in view of the presence of topological surface states.