An investigation of the low-DeltaV near-Earth asteroids (341843) 2008 EV5 and (52381) 1993 HA. Two suitable targets for the ARM and MarcoPolo-M5 space missions


Abstract in English

The Asteroid Redirect Mission (ARM) under development by NASA is being planned to collect a multi-meter boulder from a near-Earth asteroid (NEA), and to bring it to the cis-lunar space in the mid-2020s for future study and exploitation by a crewed mission. The MarcoPolo-M5 project is being proposed in 2016 for the M5 mission opportunity by ESA, to bring back to Earth a sample from a very primitive D-type NEA. We aim to further characterize the physical properties of two optimal targets for sample return space missions, the low-DeltaV NEAs (341843) 2008 EV5 and (52381) 1993 HA. 2008 EV5 is the baseline target of ARM, but only one spectrum of this object exists in the literature. 1993 HA is a very favourable target for a space mission based on its dynamical properties: here we intend to assess if it is a suitable target for MarcoPolo-M5. We obtained visible spectroscopy of 2008 EV5 with the FORS2 instrument at ESO-VLT, at different rotational phases. We also obtained visible and near-infrared spectroscopy of 1993 HA, using the EFOSC2 and SOfI instruments at ESO-NTT. Visible photometry of 1993 HA was carried out within the IMPACTON project at the Observatorio Astronomico do Sertao de Itaparica (Brazil). Our new observations are in agreement with the C-type classification of 2008 EV5. We obtained five visible spectra which do not show any variability within the limits of noise, suggesting a homogeneous surface. We obtained the first ever spectroscopic dataset for 1993 HA, finding a featureless, red-sloped behaviour typical of D-types. We found that the synodic rotation period of 1993 HA is 4.107+-0.002 h. The derived lightcurve also suggests an elongated shape (axis ratio a/b>=1.71). At this stage 1993 HA does indeed seem to be the most favourable target for MarcoPolo-M5, though future observations are necessary to study it further.

Download