Do you want to publish a course? Click here

A multiscale continuous Galerkin method for stochastic simulation and robust design of photonic crystals

62   0   0.0 ( 0 )
 Added by Ferran Vidal-Codina
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We present a multiscale continuous Galerkin (MSCG) method for the fast and accurate stochastic simulation and optimization of time-harmonic wave propagation through photonic crystals. The MSCG method exploits repeated patterns in the geometry to drastically decrease computational cost and incorporates the following ingredients: (1) a reference domain formulation that allows us to treat geometric variability resulting from manufacturing uncertainties; (2) a reduced basis approximation to solve the parametrized local subproblems; (3) a gradient computation of the objective function; and (4) a model and variance reduction technique that enables the accelerated computation of statistical outputs by exploiting the statistical correlation between the MSCG solution and the reduced basis approximation. The proposed method is thus well suited for both deterministic and stochastic simulations, as well as robust design of photonic crystals. We provide convergence and cost analysis of the MSCG method, as well as a simulation results for a waveguide T-splitter and a Z-bend to illustrate its advantages for stochastic simulation and robust design.



rate research

Read More

Numerical simulation of flow problems and wave propagation in heterogeneous media has important applications in many engineering areas. However, numerical solutions on the fine grid are often prohibitively expensive, and multiscale model reduction techniques are introduced to efficiently solve for an accurate approximation on the coarse grid. In this paper, we propose an energy minimization based multiscale model reduction approach in the discontinuous Galerkin discretization setting. The main idea of the method is to extract the non-decaying component in the high conductivity regions by identifying dominant modes with small eigenvalues of local spectral problems, and define multiscale basis functions in coarse oversampled regions by constraint energy minimization problems. The multiscale basis functions are in general discontinuous on the coarse grid and coupled by interior penalty discontinuous Galerkin formulation. The minimal degree of freedom in representing high-contrast features is achieved through the design of local spectral problems, which provides the most compressed local multiscale space. We analyze the method for solving Darcy flow problem and show that the convergence is linear in coarse mesh size and independent of the contrast, provided that the oversampling size is appropriately chosen. Numerical results are presented to show the performance of the method for simulation on flow problem and wave propagation in high-contrast heterogeneous media.
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow problems, including turbulence, as well. The incompressible fluid is modeled with an artificial compressibility approach in order to avoid solving elliptical problems. No-slip and in/outflow boundary conditions are imposed using volume penalization. The governing equations are discretized on a locally uniform Cartesian grid with centered finite differences, and integrated in time with a Runge--Kutta scheme, both of 4th order. The domain is partitioned into cubic blocks with equidistant grids with different resolution and, for each block, biorthogonal interpolating wavelets are used as refinement indicators and prediction operators. Thresholding the wavelet coefficients allows to generate dynamically evolving grids, and an adaption strategy tracks the solution in both space and scale. Blocks are distributed among MPI processes and the global topology of the grid is encoded using a tree-like data structure. Analyzing the different physical and numerical parameters allows balancing their individual error contributions and thus ensures optimal convergence while minimizing computational effort. Different validation tests score accuracy and performance of our new open source code, WABBIT (Wavelet Adaptive Block-Based solver for Interactions with Turbulence), on massively parallel computers using fully adaptive grids. Flow simulations of flapping insects demonstrate its applicability to complex, bio-inspired problems.
We introduce a new stabilization for discontinuous Galerkin methods for the Poisson problem on polygonal meshes, which induces optimal convergence rates in the polynomial approximation degree $p$. In the setting of [S. Bertoluzza and D. Prada, A polygonal discontinuous Galerkin method with minus one stabilization, ESAIM Math. Mod. Numer. Anal. (DOI: 10.1051/m2an/2020059)], the stabilization is obtained by penalizing, in each mesh element $K$, a residual in the norm of the dual of $H^1(K)$. This negative norm is algebraically realized via the introduction of new auxiliary spaces. We carry out a $p$-explicit stability and error analysis, proving $p$-robustness of the overall method. The theoretical findings are demonstrated in a series of numerical experiments.
Linear poroelasticity models have a number of important applications in biology and geophysics. In particular, Biots consolidation model is a well-known model that describes the coupled interaction between the linear response of a porous elastic medium and a diffusive fluid flow within it, assuming small deformations. Although deterministic linear poroelasticity models and finite element methods for solving them numerically have been well studied, there is little work to date on robust algorithms for solving poroelasticity models with uncertain inputs and for performing uncertainty quantification (UQ). The Biot model has a number of important physical parameters and inputs whose precise values are often uncertain in real world scenarios. In this work, we introduce and analyse the well-posedness of a new five-field model with uncertain and spatially varying Youngs modulus and hydraulic conductivity field. By working with a properly weighted norm, we establish that the weak solution is stable with respect to variations in key physical parameters, including the Poisson ratio. We then introduce a novel locking-free stochastic Galerkin mixed finite element method that is robust in the incompressible limit. Armed with the `right norm, we construct a parameter-robust preconditioner for the associated discrete systems. Our new method facilitates forward UQ, allowing efficient calculation of statistical quantities of interest and is provably robust with respect to variations in the Poisson ratio, the Biot--Willis constant and the storage coefficient, as well as the discretization parameters.
In this work, we propose a local multiscale model reduction approach for the time-domain scalar wave equation in a heterogenous media. A fine mesh is used to capture the heterogeneities of the coefficient field, and the equation is solved globally on a coarse mesh in the discontinuous Galerkin discretization setting. The main idea of the model reduction approach is to extract dominant modes in local spectral problems for representation of important features, construct multiscale basis functions in coarse oversampled regions by constraint energy minimization problems, and perform a Petrov-Galerkin projection and a symmetrization onto the coarse grid. The method is expicit and energy conserving, and exhibits both coarse-mesh and spectral convergence, provided that the oversampling size is appropriately chosen. We study the stability and convergence of our method. We also present numerical results on the Marmousi model in order to test the performance of the method and verify the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا