No Arabic abstract
This study is a contribution in comprehending the role of binarity upon late stages of stellar evolution. We determine the binary status of six Galactic RV Tauri stars, namely DY Ori, EP Lyr, HP Lyr, IRAS 17038-4815, IRAS 09144-4933 and TW Cam, which are surrounded by a dusty disc. We also place them on the HR diagram, thereby establishing their evolutionary nature. All the six Galactic RV Tauri stars included in this study are binaries with orbital periods ranging between $sim$ 650 and 1700 days and with eccentricities between 0.2 and 0.6. The mass functions range between 0.08 to 0.55 M$_odot$ which points to an unevolved low mass companion. In the photometric time series we detect a long-term variation on the time-scale of the orbital period for IRAS 17038-4815, IRAS 09144-4933 and TW Cam. Our derived stellar luminosities obtained from a calibrated PLC relation indicates that all except DY Ori and EP Lyr, are post-AGB stars. DY Ori and EP Lyr are likely examples of the recently discovered dusty post-RGB stars. The orbital parameters strongly suggest that the evolution of these stars was interrupted by a strong phase of binary interaction during or even prior to the AGB. The observed eccentricities and long orbital periods among these stars provides a challenge to the standard theory of binary evolution.
We performed a photometric and spectroscopic analysis of two RV Tauri stars GK Car and GZ Nor. Both objects are surrounded by hot circumstellar dust. Their pulsation periods, derived from ASAS photometric time series, have been used to derive their luminosities and distances via the PLC relation. In addition, for both objects, GAIA distances are available. The Gaia distances and luminosities are consistent with the values obtained from the PLC relationship. GK Car is at distance of 4.5$pm{1.3}$ kpc and has a luminosity of 1520$pm{840}$ L$_{odot}$, while GZ Nor is at distance of 8.4$pm{2.3}$ kpc and has a luminosity of 1240 $pm{690}$ L$_{odot}$. Our abundance analysis reveals that both stars show depletion of refractory elements with [Fe/H]=$-$1.3 and [Zn/Ti]=$+$1.2 for GK Car and [Fe/H]=$-$2.0 and [Zn/Ti]=$+$0.8 for GZ Nor. In the WISE colour-colour diagram, GK Car is located in the RV Tauri box as originally defined by cite{evans85} and updated by cite{gezer15}, while GZ Nor is not. Despite this, we argue that both objects are surrounded by a gravitationally bound disc. As depletion is observed in binaries, we postulate that both stars are binaries as well. RV Tauri stars are generally acknowledged to be post$-$AGB stars. Recent studies show that they might be either indeed post$-$AGB or post$-$RGB objects depending on their luminosity. For both objects, the derived luminosities are relatively low for post-AGB objects, however, the uncertainties are quite large. We conclude that they could be either post-RGB or post-AGB objects.
Based on their stellar parameters and the presence of a mid-IR excess due to circumstellar dust, RV Tauri stars have been classified as post-AGB stars. Our recent studies, however, reveal diverse SEDs among RV Tauri stars, suggesting they may occupy other evolutionary channels as well. The aim of this paper is to present the diverse SED characteristics of RV Tauri stars and investigate their evolutionary nature as a function of their SEDs. We carried out a systematic study of RV Tauri stars in the SMC and LMC because of their known distances and hence luminosities. Their SEDs were classified in three groups: dusty (disc-type), non-dusty (non-IR) and uncertain. A period-luminosity- colour (PLC) relation was calibrated. The luminosities from the PLC were complemented with the ones found using their SEDs and the stars were placed on the HR-diagram. The four main results from this study are: 1) RV Tauri stars with a clear IR-excess have disc-type SEDs, which indicates that the dust is trapped in a stable disc. Given the strong link between disc-type SEDs and binarity in the Galaxy, we postulate that these are binaries as well. These cover a range of luminosities and we argue that the more luminous ones are post-AGB stars while the lower luminosity ones are likely post-Red Giant Branch (post-RGB) stars. 2) Two of these objects have variable mean brightness with periods of 916 and 850 days, respectively, caused by variable extinction during orbital motion. 3) The non-dusty RV Tauri stars and the objects with an uncertain SED evolve such that the circumstellar dust has dispersed. If they are single stars, they are post-AGB objects of low initial mass ($<$ 1.25 M$_odot$), while if they are binaries, the low-luminosity part of the sample are likely post-RGB stars. 4) We find that RV Tauri stars with dust are on average more luminous than the rest of the sample.
The fraction of binary stars (fb) is one of most valuable tool to probe the star formation and evolution of multiple systems in the Galaxy. We focus on the relationship between fb and stellar metallicity ([Fe/H]) by employing the differential radial velocity (DRV) method and the large sample observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Main-sequence stars from A- to K-types in the third data release (DR3) of LAMOST are selected to estimate fb. Contributions to a profile of DRV from radial velocity (RV) error of single stars (sigma) and orbital motion of binary stars are evaluated from the profile of DRV. Finally, we employ 365,911 stars with randomly repeating spectral observations to present a detailed analysis of fb and sigma in the two-dimensional (2D) space of Teff and [Fe/H]. The A-type stars are more likely to be companions in binary star systems than other stars. Furthermore, the reverse correlation between fb and [Fe/H] can be shown statistically, which suggests that fb is a joint function of Teff and [Fe/H]. At the same time, sigma of the sample for different Teff and [Fe/H] are fitted. Metal-rich cold stars in our sample have the best RV measurement.
Aim: The focus of this paper is on two famous but still poorly understood RV Tauri stars: RV Tau and DF Cyg. We aim at confirming their suspected binary nature and deriving their orbital elements to investigate the impact of their orbits on the evolution of these systems. This research is embedded into a wider endeavour to study binary evolution of low- and intermediate-mass stars. Method: The high amplitude pulsations were cleaned from the radial-velocity data to better constrain the orbital motion. We used Gaia DR2 parallaxes in combination with the SEDs to compute their luminosities which were complemented with the ones computed using a period-luminosity-colour relation. The ratio of the circumstellar infrared flux to the photospheric flux obtained from the SEDs was used to estimate the orbital inclination of each system. Results: DF Cyg and RV Tau are binaries with spectroscopic orbital periods of 784$pm$16 days and 1198$pm$17 days, respectively. These orbital periods are found to be similar to the long-term periodic variability in the photometric time series, indicating that binarity indeed explains the long-term photometric variability. Both systems are surrounded by a circumbinary disc which is grazed by our line-of-sight. As a result, the stellar photometric flux is extinct periodically with the orbital period. Our derived orbital inclinations enabled us to obtain accurate companion masses for DF Cyg and RV Tau. Analysis of the Kepler photometry of DF Cyg revealed a power spectrum with side lobes around the fundamental pulsation frequency. This modulation corresponds to the spectroscopic orbital period and hence to the long-term photometric period. Finally we report on the evidence of high velocity absorption features related to the H$_{alpha}$ profile in both objects, indicating outflows launched from around the companion.
Alpha Ophiuchi (Rasalhague) is a nearby rapidly rotating A5IV star which has been imaged by infrared interferometry. $alpha$ Oph is also part of a known binary system, with a companion semi-major axis of $sim$430 milli-arcseconds and high eccentricity of 0.92. The binary companion provides the unique opportunity to measure the dynamical mass to compare with the results of rapid rotator evolution models. The lack of data near periastron passage limited the precision of mass measurements in previous work. We add new interferometric data from the MIRC combiner at the CHARA Array as well as new Keck adaptive optics imaging data with NIRC2, including epochs taken near periastron passage. We also obtained new radial velocities of both components at Fairborn Observatory. Our updated combined orbit for the system drastically reduces the errors of the orbital elements, and allows for precise measurement of the primary star mass at the few percent level. Our resulting primary star mass of $2.20pm0.06$ M$_{odot}$ agrees well with predictions from imaging results, and matches evolution models with rotation when plotting on an HR diagram. However, to truly distinguish between non-rotating and rotating evolution models for this system we need $sim$1% errors on mass, which might be achieved once the distance is known to higher precision in future Gaia releases. We find that the secondary mass of $0.824pm0.023$ M$_{odot}$ is slightly under-luminous when compared to stellar evolution models. We show that $alpha$ Oph is a useful reference source for programs that need $pm$1 milli-arcsecond astrometry.