We compare the low eigenvalue spectra of the Overlap Dirac operator on two sets of configurations at $mu_I/mu_I^c$ = 0.5 and 1.5 generated with dynamical staggered fermions at these isospin chemical potential on $24^3 times 6$ lattices. We find very small changes in the number of zero modes and low lying modes which is in stark contrast with those across the corresponding finite temperature phases where one sees a drop across the phase transition. Possible consequences are discussed.
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter.
We investigate the QCD phase diagram for small values of baryon and strange quark chemical potentials from simulations at non-zero isospin chemical potential. Simulations at pure isospin chemical potential are not hindered by the sign problem and pion condensation can be observed for sufficiently large isospin chemical potentials. We study how the related phase boundary evolves with baryonic and strange chemical potentials via reweighting in quark chemical potentials and discuss our results. Furthermore, we propose and implement an alternative method to approach nonzero baryon (and strange quark) chemical potentials. This method involves simulations where physical quarks are paired with auxiliary quarks in unphysical isospin doublets and a decoupling of the auxiliary quarks by mass reweighting.
Wilson Fermions with untwisted and twisted mass are widely used in lattice simulations. Therefore one important question is whether the twist angle and the lattice spacing affect the phase diagram. We briefly report on the study of the phase diagram of QCD in the parameter space of the degenerate quark masses, isospin chemical potential, lattice spacing, and twist angle by employing chiral perturbation theory. Moreover we calculate the pion masses and their dependence on these four parameters.
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic analysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.
Gunnar S. Bali
,G. Endrodi
,Rajiv V. Gavai
.
(2016)
.
"Probing the nature of phases across the phase transition at finite isospin chemical potential"
.
Rajiv V. Gavai
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا