Do you want to publish a course? Click here

Gravitational Wave Memory: A New Approach to Study Modified Gravity

59   0   0.0 ( 0 )
 Added by Song Ming Du
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the non-linear, or Christodoulou memory. These effects, especially the latter, depend on the specific form of Einstein equation. It can then be speculated that in modified theories of gravity, the memory can differ from the GR prediction, and provides novel phenomena to study these theories. We support this speculation by considering scalar-tensor theories, for which we find two new types of memory: the T memory and the S memory, which contribute to the tensor and scalar components of gravitational wave, respectively. In particular, the former is caused by the burst of energy carried away by scalar radiation, while the latter is intimately related to the no scalar hair property of black holes in scalar-tensor gravity. We estimate the size of these two types of memory in gravitational collapses, and formulate a detection strategy for the S memory, which can be singled out from tensor gravitational waves. We show that (i) the S memory exists even in spherical symmetry, and is observable under current model constraints, and (ii) while the T memory is usually much weaker than the S memory, it can become comparable in the case of spontaneous scalarization.



rate research

Read More

The gravitational memory effects of Chern-Simons modified gravity are considered in the asymptotically flat spacetime. If the Chern-Simons scalar does not directly couple with the ordinary matter fields, there are also displacement, spin and center-of-mass memory effects as in general relativity. This is because the term of the action that violates the parity invariance is linear in the scalar field but quadratic in the curvature tensor. This results in the parity violation occuring at the higher orders in the inverse luminosity radius. The scalar field does not induce any new memory effects that can be detected by interferometers or pulsar timing arrays. The asymptotic symmetry is group is also the extended Bondi-Metzner-Sachs group. The constraints on the memory effects excited by the tensor modes are obtained.
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.
58 - Rafael C. Nunes 2020
We investigate how the propagation of an astrophysical gravitational wave background (AGWB) is modified over cosmological volumes when considering theories beyond general relativity of the type Horndeski gravity. We first deduce an amplitude correction on the AGWB induced for the presence of a possible running in the Planck mass. Then, we apply the spectral noise density from some ground-based interferometers, namely, the Advanced LIGO (aLIGO), Einstein Telescope (ET) and Cosmic Explore (CE), to evaluate the signal-to-noise ratio (SNR) as a function of the amplitude of the running of the Planck mass for two different scenarios. We find that for observation time period $gtrsim$ 5 yrs and $gtrsim$ 1 yr, we can have a significant signal of the AGWB in the band [1-100] Hz from the ET and CE sensitivity, respectively. Using Fisher information, we find some forecast bounds, and we deduce $lesssim$ 27% and $lesssim$ 18% correction at 1$sigma$ confidence level on the amplitude of the running of the Planck mass from ET and CE, respectively. It is clear that a detection of a AGWB in future can open a new window to probe the nature of gravity with good accuracy.
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a spherically symmetric system, we assume that $F(R)$ is a function of the radial coordinate only. Moreover, adopting the weak field approximation, we can provide all components of the metric tensor. A comparison with the corresponding results obtained in General Relativity and in the Brans-Dicke theory is also made.
We extend our previous work on applying CMB techniques to the mapping of gravitational-wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results are presented in the context of pulsar-timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar-timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse (breathing) and vector-longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا