We study the spontaneous decoherence of the coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the hidden couplings between the center-of-mass and relative degrees of freedoms, which actually originates from the symmetries of the ring geometry and corresponding nontrivial boundary conditions. Especially, such spontaneous decoherence completely vanishes at the thermodynamical limit because the nontrivial boundary conditions become trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has chance to degrade its quantum properties even without applying an external symmetry breaking field or surrounding environment.