Do you want to publish a course? Click here

Keyless authentication in the presence of a simultaneously transmitting adversary

75   0   0.0 ( 0 )
 Added by Eric Graves
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

If Alice must communicate with Bob over a channel shared with the adversarial Eve, then Bob must be able to validate the authenticity of the message. In particular we consider the model where Alice and Eve share a discrete memoryless multiple access channel with Bob, thus allowing simultaneous transmissions from Alice and Eve. By traditional random coding arguments, we demonstrate an inner bound on the rate at which Alice may transmit, while still granting Bob the ability to authenticate. Furthermore this is accomplished in spite of Alice and Bob lacking a pre-shared key, as well as allowing Eve prior knowledge of both the codebook Alice and Bob share and the messages Alice transmits.

rate research

Read More

142 - Xidong Mu , Yuanwei Liu , Li Guo 2021
The novel concept of simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RISs) is investigated, where the incident wireless signal is divided into transmitted and reflected signals passing into both sides of the space surrounding the surface, thus facilitating a full-space manipulation of signal propagation. Based on the introduced basic signal model of `STAR, three practical operating protocols for STAR-RISs are proposed, namely energy splitting (ES), mode switching (MS), and time switching (TS). Moreover, a STAR-RIS aided downlink communication system is considered for both unicast and multicast transmission, where a multi-antenna base station (BS) sends information to two users, i.e., one on each side of the STAR-RIS. A power consumption minimization problem for the joint optimization of the active beamforming at the BS and the passive transmission and reflection beamforming at the STAR-RIS is formulated for each of the proposed operating protocols, subject to communication rate constraints of the users. For ES, the resulting highly-coupled non-convex optimization problem is solved by an iterative algorithm, which exploits the penalty method and successive convex approximation. Then, the proposed penalty-based iterative algorithm is extended to solve the mixed-integer non-convex optimization problem for MS. For TS, the optimization problem is decomposed into two subproblems, which can be consecutively solved using state-of-the-art algorithms and convex optimization techniques. Finally, our numerical results reveal that: 1) the TS and ES operating protocols are generally preferable for unicast and multicast transmission, respectively; and 2) the required power consumption for both scenarios is significantly reduced by employing the proposed STAR-RIS instead of conventional reflecting/transmiting-only RISs.
This paper introduces the notion of cache-tapping into the information theoretic models of coded caching. The wiretap channel II in the presence of multiple receivers equipped with fixed-size cache memories, and an adversary which selects symbols to tap into from cache placement and/or delivery is introduced. The legitimate terminals know neither whether placement, delivery, or both are tapped, nor the positions in which they are tapped. Only the size of the overall tapped set is known. For two receivers and two files, the strong secrecy capacity -- the maximum achievable file rate while keeping the overall library strongly secure -- is identified. Lower and upper bounds on the strong secrecy file rate are derived when the library has more than two files. Achievability relies on a code design which combines wiretap coding, security embedding codes, one-time pad keys, and coded caching. A genie-aided upper bound, in which the transmitter is provided with user demands before placement, establishes the converse for the two-files case. For more than two files, the upper bound is constructed by three successive channel transformations. Our results establish provable security guarantees against a powerful adversary which optimizes its tapping over both phases of communication in a cache-aided system.
Different from traditional reflection-only reconfigurable intelligent surfaces (RISs), simultaneously transmitting and reflecting RISs (STAR-RISs) represent a novel technology, which extends the textit{half-space} coverage to textit{full-space} coverage by simultaneously transmitting and reflecting incident signals. STAR-RISs provide new degrees-of-freedom (DoF) for manipulating signal propagation. Motivated by the above, a novel STAR-RIS assisted non-orthogonal multiple access (NOMA) (STAR-RIS-NOMA) system is proposed in this paper. Our objective is to maximize the achievable sum rate by jointly optimizing the decoding order, power allocation coefficients, active beamforming, and transmission and reflection beamforming. However, the formulated problem is non-convex with intricately coupled variables. To tackle this challenge, a suboptimal two-layer iterative algorithm is proposed. Specifically, in the inner-layer iteration, for a given decoding order, the power allocation coefficients, active beamforming, transmission and reflection beamforming are optimized alternatingly. For the outer-layer iteration, the decoding order of NOMA users in each cluster is updated with the solutions obtained from the inner-layer iteration. Moreover, an efficient decoding order determination scheme is proposed based on the equivalent-combined channel gains. Simulation results are provided to demonstrate that the proposed STAR-RSI-NOMA system, aided by our proposed algorithm, outperforms conventional RIS-NOMA and RIS assisted orthogonal multiple access (RIS-OMA) systems.
This paper investigates the secret key authentication capacity region. Specifically, the focus is on a model where a source must transmit information over an adversary controlled channel where the adversary, prior to the sources transmission, decides whether or not to replace the destinations observation with an arbitrary one of their choosing (done in hopes of having the destination accept a false message). To combat the adversary, the source and destination share a secret key which they may use to guarantee authenticated communications. The secret key authentication capacity region here is then defined as the region of jointly achievable message rate, authentication rate, and key consumption rate (i.e., how many bits of secret key are needed). This is the first of a two part study, with the parts differing in how the authentication rate is measured. In this first study the authenticated rate is measured by the traditional metric of the maximum expected probability of false authentication. For this metric, we provide an inner bound which improves on those existing in the literature. This is achieved by adopting and merging different classical techniques in novel ways. Within these classical techniques, one technique derives authentication capability directly from the noisy communications channel, and the other technique derives its authentication capability directly from obscuring the source.
We consider a problem of guessing, wherein an adversary is interested in knowing the value of the realization of a discrete random variable $X$ on observing another correlated random variable $Y$. The adversary can make multiple (say, $k$) guesses. The adversarys guessing strategy is assumed to minimize $alpha$-loss, a class of tunable loss functions parameterized by $alpha$. It has been shown before that this loss function captures well known loss functions including the exponential loss ($alpha=1/2$), the log-loss ($alpha=1$) and the $0$-$1$ loss ($alpha=infty$). We completely characterize the optimal adversarial strategy and the resulting expected $alpha$-loss, thereby recovering known results for $alpha=infty$. We define an information leakage measure from the $k$-guesses setup and derive a condition under which the leakage is unchanged from a single guess.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا