Do you want to publish a course? Click here

Weakly Laskerian rings versus Noetherian rings

242   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let R be a commutative ring with identity. We investigate some ring-theoretic properties of weakly Laskerian R-modules. Our results indicate that weakly Laskerian rings behave as Noetherian ones in many respects. However, we provide some examples to illustrate the strange behavior of these rings in some other respects.



rate research

Read More

We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension or finite injective dimension.
235 - Jesse Burke 2011
We study rings which have Noetherian cohomology under the action of a ring of cohomology operators. The main result is a criterion for a complex of modules over such a ring to have finite injective dimension. This criterion generalizes, by removing finiteness conditions, and unifies several previous results. In particular we show that for a module over a ring with Noetherian cohomology, if all higher self-extensions of the module vanish then it must have finite injective dimension. Examples of rings with Noetherian cohomology include commutative complete intersection rings and finite dimensional cocommutative Hopf algebras over a field.
230 - Nick Cox-Steib 2020
We develop new methods to study $mathfrak{m}$-adic stability in an arbitrary Noetherian local ring. These techniques are used to prove results about the behavior of Hilbert-Samuel and Hilbert-Kunz multiplicities under fine $mathfrak{m}$-adic perturbations.
Let R be a commutative Noetherian ring. We introduce the notion of colocalization functors with supports in arbitrary subsets of Spec R, which is a natural generalization of right derived functors of section functors with supports in specialization-closed subsets. We prove that the local duality theorem and the vanishing theorem of Grothendieck type hold for colocalization functors.
Let $R$ be a commutative ring with identity. In this paper, we introduce the concept of weakly $1$-absorbing prime ideals which is a generalization of weakly prime ideals. A proper ideal $I$ of $R$ is called weakly $1$-absorbing prime if for all nonunit elements $a,b,c in R$ such that $0 eq abc in I$, then either $ab in I$ or $c in I$. A number of results concerning weakly $1$-absorbing prime ideals and examples of weakly $1$-absorbing prime ideals are given. It is proved that if $I$ is a weakly $1$-absorbing prime ideal of a ring $R$ and $0 eq I_1I_2I_3 subseteq I$ for some ideals $I_1, I_2, I_3$ of $R$ such that $I$ is free triple-zero with respect to $I_1I_2I_3$, then $ I_1I_2 subseteq I$ or $I_3subseteq I$. Among other things, it is shown that if $I$ is a weakly $1$-absorbing prime ideal of $R$ that is not $1$-absorbing prime, then $I^3 = 0$. Moreover, weakly $1$-absorbing prime ideals of PIDs and Dedekind domains are characterized. Finally, we investigate commutative rings with the property that all proper ideals are weakly $1$-absorbing primes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا