Structural and Vibrational Properties of the TiOPc monolayer on Ag(111)


Abstract in English

The evolution of titanyl-phthalocyanine (TiOPc) thin films on Ag(111) has been investigated using IRAS, SPA-LEED and STM. In the (sub)monolayer regime various phases are observed that can be assigned to a 2D gas, a commensurate and a point-on-line phase. In all three phases the non-planar TiOPc molecule is adsorbed on Ag(111) in an oxygen-up configuration with the molecular pi-conjugated backbone oriented parallel to the surface. The commensurate phase reveals a high packing density, containing two molecules at inequivalent adsorption sites within the unit cell. Both molecules assume different azimuthal orientations which is ascribed to preferred sites and azimuthal orientations with respect to the Ag(111) substrate and, to a lesser extent, to a minimization of repulsive Pauli interactions between adjacent molecules at short distances. At full saturation of the monolayer the latter interaction becomes dominant and the commensurate long range order is lost. DFT calculations have been used to study different adsorption geometries of TiOPc on Ag(111). The most stable configurations among those with pointing up oxygen atoms (bridge+, bridgex, topx) seem to correspond to those identified experimentally. The calculated dependence of the electronic structure and molecular dipole on the adsorption site and configuration is found to be rather small.

Download