No Arabic abstract
We investigate the two-dimensional $q=3$ and 4 Potts models with a variable interaction range by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges as expressed by the number $z$ of equivalent neighbors. For not too large $z$, the transitions fit well in the universality classes of the short-range Potts models. However, at longer ranges the transitions become discontinuous. For $q=3$ we locate a tricritical point separating the continuous and discontinuous transitions near $z=80$, and a critical fixed point between $z=8$ and 12. For $q=4$ the transition becomes discontinuous for $z > 16$. The scaling behavior of the $q=4$ model with $z=16$ approximates that of the $q=4$ merged critical-tricritical fixed point predicted by the renormalization scenario.
We investigate the influence of the range of interactions in the two-dimensional bond percolation model, by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges, as expressed by the number $z$ of equivalent neighbors. We also consider the $z to infty$ limit, i.e., the complete graph case, where percolation bonds are allowed between each pair of sites, and the model becomes mean-field-like. All investigated models with finite $z$ are found to belong to the short-range universality class. There is no evidence of a tricritical point separating the short-range and long-range behavior, such as is known to occur for $q=3$ and $q=4$ Potts models. We determine the renormalization exponent describing a finite-range perturbation at the mean-field limit as $y_r approx 2/3$. Its relevance confirms the continuous crossover from mean-field percolation universality to short-range percolation universality. For finite interaction ranges, we find approximate relations between the coordination numbers and the amplitudes of the leading correction terms as found in the finite-size scaling analysis.
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena: We analytically characterize a Hopf bifurcation which separates a high-temperature regime of uniform occupations from a low-temperature one where all units coalesce into a single state. For odd $q$ below the critical temperature starts a synchronization regime which ends via a second phase transition at lower temperatures, while for even $q$ this intermediate phase disappears. We find that interactions have no effects except below critical temperature for attractive interactions. A thermodynamic analysis reveals that the dissipated work is reduced in this regime, whose temperature range is shown to decrease as $q$ increases. The $q$-dependence of the power-efficiency trade-off is also analyzed.
The chiral spin-glass Potts system with q=3 states is studied in d=2 and 3 spatial dimensions by renormalization-group theory and the global phase diagrams are calculated in temperature, chirality concentration p, and chirality-breaking concentration c, with determination of phase chaos and phase-boundary chaos. In d=3, the system has ferromagnetic, left-chiral, right-chiral, chiral spin-glass, and disordered phases. The phase boundaries to the ferromagnetic, left- and right-chiral phases show, differently, an unusual, fibrous patchwork (microreentrances) of all four (ferromagnetic, left-chiral, right-chiral, chiral spin-glass) ordered ordered phases, especially in the multicritical region. The chaotic behavior of the interactions, under scale change, are determined in the chiral spin-glass phase and on the boundary between the chiral spin-glass and disordered phases, showing Lyapunov exponents in magnitudes reversed from the usual ferromagnetic-antiferromagnetic spin-glass systems. At low temperatures, the boundaries of the left- and right-chiral phases become thresholded in p and c. In the d=2, the chiral spin-glass system does not have a spin-glass phase, consistently with the lower-critical dimension of ferromagnetic-antiferromagnetic spin glasses. The left- and right-chirally ordered phases show reentrance in chirality concentration p.
We compute the crossover exponents of all quadratic and cubic deformations of critical field theories with permutation symmetry $S_q$ in $d=6-epsilon$ (Landau-Potts field theories) and $d=4-epsilon$ (hypertetrahedral models) up to three loops.We use our results to determine the $epsilon$-expansion of the fractal dimension of critical clusters in the most interesting cases, which include spanning trees and forests ($qto0$), and bond percolations ($qto1$). We also explicitly verify several expected degeneracies in the spectrum of relevant operators for natural values of $q$ upon analytic continuation, which are linked to logarithmic corrections of CFT correlators, and use the $epsilon$-expansion to determine the universal coefficients of such logarithms.
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of parameters, often larger than the number of available data, and, hence, requires the introduction of regularization. We study here a double regularization scheme, in which the number of colors available to each variable is reduced, and interaction networks are made sparse. To achieve this color compression scheme, only Potts states with large empirical frequency (exceeding some threshold) are explicitly modeled on each site, while the others are grouped into a single state. We benchmark the performances of this mixed regularization approach, with two inference algorithms, the Adaptive Cluster Expansion (ACE) and the PseudoLikelihood Maximization (PLM) on synthetic data obtained by sampling disordered Potts models on an Erdos-Renyi random graphs. We show in particular that color compression does not affect the quality of reconstruction of the parameters corresponding to high-frequency symbols, while drastically reducing the number of the other parameters and thus the computational time. Our procedure is also applied to multi-sequence alignments of protein families, with similar results.