Do you want to publish a course? Click here

The link between solenoidal turbulence and slow star formation in G0.253+0.016

82   0   0.0 ( 0 )
 Added by Christoph Federrath
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Star formation in the Galactic disc is primarily controlled by gravity, turbulence, and magnetic fields. It is not clear that this also applies to star formation near the Galactic Centre. Here we determine the turbulence and star formation in the CMZ cloud G0.253+0.016. Using maps of 3mm dust emission and HNCO intensity-weighted velocity obtained with ALMA, we measure the volume-density variance $sigma_{rho/rho_0} = 1.3 pm 0.5$ and turbulent Mach number $mathcal{M} = 11 pm 3$. Combining these with turbulence simulations to constrain the plasma $beta = 0.34 pm 0.35$, we reconstruct the turbulence driving parameter $b = 0.22 pm 0.12$ in G0.253+0.016. This low value of $b$ indicates solenoidal (divergence-free) driving of the turbulence in G0.253+0.016. By contrast, typical clouds in the Milky Way disc and spiral arms have a significant compressive (curl-free) driving component ($b > 0.4$). We speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this may reduce the star formation rate by a factor of 7 compared to nearby clouds.



rate research

Read More

Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic Center may differ substantially from spiral-arm clouds. Here we determine the physical parameters of the central molecular zone (CMZ) cloud G0.253+0.016, its turbulence, magnetic field and filamentary structure. Using column-density maps based on dust-continuum emission observations with ALMA+Herschel, we identify filaments and show that at least one dense core is located along them. We measure the filament width W_fil=0.17$pm$0.08pc and the sonic scale {lambda}_sonic=0.15$pm$0.11pc of the turbulence, and find W_fil~{lambda}_sonic. A strong velocity gradient is seen in the HNCO intensity-weighted velocity maps obtained with ALMA+Mopra, which is likely caused by large-scale shearing of G0.253+0.016, producing a wide double-peaked velocity PDF. After subtracting the gradient to isolate the turbulent motions, we find a nearly Gaussian velocity PDF typical for turbulence. We measure the total and turbulent velocity dispersion, 8.8$pm$0.2km/s and 3.9$pm$0.1km/s, respectively. Using magnetohydrodynamical simulations, we find that G0.253+0.016s turbulent magnetic field B_turb=130$pm$50$mu$G is only ~1/10 of the ordered field component. Combining these measurements, we reconstruct the dominant turbulence driving mode in G0.253+0.016 and find a driving parameter b=0.22$pm$0.12, indicating solenoidal (divergence-free) driving. We compare this to spiral-arm clouds, which typically have a significant compressive (curl-free) driving component (b>0.4). Motivated by previous reports of strong shearing motions in the CMZ, we speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this reduces the star formation rate (SFR) by a factor of 6.9 compared to typical nearby clouds.
225 - L. F. Rodriguez , L.Zapata 2013
G0.253+0.016 is a remarkable massive infrared dark cloud located within $sim$100 pc of the galactic center. With a high mass of $1.3 times 10^5 M_odot$, a compact average radius of $sim$2.8 pc and a low dust temperature of 23 K, it has been believed to be a yet starless precursor to a massive Arches-like stellar cluster. We present sensitive JVLA 1.3 and 5.6 cm radio continuum observations that reveal the presence on three compact thermal radio sources projected against this cloud. These radio sources are interpreted as HII regions powered by $sim$B0.5 ZAMS stars. We conclude that although G0.253+0.016 does not show evidence of O-type star formation, there are certainly early B-type stars embedded in it. We detect three more sources in the periphery of G0.253+0.016 with non-thermal spectral indices. We suggest that these sources may be related to the galactic center region and deserve further study.
We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using the Combined Array for Research in Millimeter--wave Astronomy (CARMA) and the Submillimeter Array (SMA). This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2x10^5 M_sun) into a radius of only 3pc, but it is essentially starless. G0.253+0.016 therefore violates star formation laws presently used to explain trends in galactic and extragalactic star formation by a factor ~45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths 1km/s---probably the narrowest lines reported for the GC region to date---are found. Evolution over several 10^5 yr is needed before more massive cores, and possibly an Arches--like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.
G0.253+0.016, aka the Brick, is one of the most massive (> 10^5 Msun) and dense (> 10^4 cm-3) molecular clouds in the Milky Ways Central Molecular Zone. Previous observations have detected tentative signs of active star formation, most notably a water maser that is associated with a dust continuum source. We present ALMA Band 6 observations with an angular resolution of 0.13 (1000 AU) towards this maser core, and report unambiguous evidence of active star formation within G0.253+0.016. We detect a population of eighteen continuum sources (median mass ~ 2 Msun), nine of which are driving bi-polar molecular outflows as seen via SiO (5-4) emission. At the location of the water maser, we find evidence for a protostellar binary/multiple with multi-directional outflow emission. Despite the high density of G0.253+0.016, we find no evidence for high-mass protostars in our ALMA field. The observed sources are instead consistent with a cluster of low-to-intermediate-mass protostars. However, the measured outflow properties are consistent with those expected for intermediate-to-high-mass star formation. We conclude that the sources are young and rapidly accreting, and may potentially form intermediate and high-mass stars in the future. The masses and projected spatial distribution of the cores are generally consistent with thermal fragmentation, suggesting that the large-scale turbulence and strong magnetic field in the cloud do not dominate on these scales, and that star formation on the scale of individual protostars is similar to that in Galactic disc environments.
The massive infrared dark cloud G0.253+0.016 projected 45pc from the Galactic centre contains ~10^5Msun of dense gas whilst being mostly devoid of observed star-formation tracers. To scrutinise the physical properties, dynamics and structure of this cloud with reference to its star-forming potential, we have carried out a concerted SMA and IRAM 30m study of this cloud in dust continuum, CO isotopologues, shock tracing molecules, as well as H$_2$CO to trace the gas temperature. We detect and characterise the dust cores within G0.253+0.016 at ~1.3 mm and find that the kinetic temperature of the gas is >320K on size-scales of ~0.15 pc. Analysis of the position-velocity diagrams of our observed lines show broad linewidths and strong shock emission in the south of the cloud, indicating that G0.253+0.016 is colliding with another cloud at v(LSR)~70 km/s. We confirm via an analysis of the observed dynamics in the CMZ that it is an elongated structure, orientated with Sgr B2 closer to the Sun than Sgr A*, however our results suggest that the actual geometry may be more complex than an elliptical ring. We find that the column density PDF of G0.253+0.016 is log-normal with no discernible power-law tail, consistent with little star formation, and that its width can be explained in the framework of theory predicting the density structure of clouds created by supersonic, magnetised turbulence. We also present the delta-variance spectrum of this region, and show it is consistent with that expected for clouds with no star formation. Using G0.253+0.016 as a test-bed of the conditions required for star formation in a different physical environment to that of nearby clouds, we also conclude that there is not one column density threshold for star formation, but instead this value is dependant on the local physical conditions. [Abbrv.]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا