Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source


Abstract in English

Using Maxwells equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black holes with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in $P-v$ diagrams. The two-phase equilibrium curves in $P-T$ diagrams are plotted, and we take the first order approximation of volume $v$ in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for higher dimensional charged topological black hole with a nonlinear source. The latent heat of isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phases coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.

Download