No Arabic abstract
Using Maxwells equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black holes with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in $P-v$ diagrams. The two-phase equilibrium curves in $P-T$ diagrams are plotted, and we take the first order approximation of volume $v$ in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for higher dimensional charged topological black hole with a nonlinear source. The latent heat of isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phases coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.
In this work we consider black hole solutions to Einstein theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black hols and find that both first and second order phase transitions can occur in the canonical ensemble, while for the grand canonical ensemble the Hawking-Page and second order phase transitions are allowed.
In this paper,we have studied phase transitions of higher dimensional charge black hole with spherical symmetry. we calculated the local energy and local temperature, and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters $(Q,Phi)$ of black hole thermodynamic system, in accordance with considering to the state parameters $(P,V)$ of Van der Waals system respectively. we obtain the critical point of black hole thermodynamic system, and find the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime, and is intrinsic property of black hole thermodynamic system.
We study scalar perturbations of four dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then, we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum and the mass of the scalar field in the modes. It is found that the modes are overdamped depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In constrast, for plane transverse sections the modes are always overdamped.
We have studied thermal chaotic behavior in the extended phase space for a charged dilaton-AdS black hole by Melnikov method and present the effect of dilaton parameter on the thermal chaos. Our result show that for the temporal perturbation the thermal chaos in the charged dilaton-AdS black hole occurs only if the perturbation amplitude is larger than certain a critical value, but for the spatially perturbation, the chaos always exists irrespective of perturbation amplitude. These behaviors are similar to those in other AdS black hole, which can be regarded as the common features of the static AdS black holes. Moreover, we also find that the critical temporal perturbation amplitude leading to chaos increases with the dilaton parameter and decreases with the charge. This means that under the temporal perturbation the presence of dilaton parameter makes the onset of chaos more difficult, which differs from that of the charge parameter.
We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.