No Arabic abstract
In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass $lesssim 100 text{ GeV}$ in a simple model. Unlike the usual standard calculations, the sterile neutrino may fall out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such a case, if the Yukawa coupling $y_N$ between the Higgs and the sterile neutrino is small, this process gives rise to a larger $Omega_{text{DM}} h^2$ so we need a larger coupling between the dark matter and the sterile neutrino for a correct relic abundance.
We present a new mechanism for producing the correct relic abundance of dark photon dark matter over a wide range of its mass, extending down to $10^{-20},mathrm{eV}$. The dark matter abundance is initially stored in an axion which is misaligned from its minimum. When the axion starts oscillating, it efficiently transfers its energy into dark photons via a tachyonic instability. If the dark photon mass is within a few orders of magnitude of the axion mass, $m_{gamma}/m_a = {cal O}(10^{-3} - 1)$, then dark photons make up the dominant form of dark matter today. We present a numerical lattice simulation for a benchmark model that explicitly realizes our mechanism. This mechanism firms up the motivation for a number of experiments searching for dark photon dark matter.
In these brief lecture notes, we introduce sterile neutrinos as dark matter candidates. We discuss in particular their production via oscillations, their radiative decay, as well as possible observational signatures and constraints.
We show that the existence of new, light gauge interactions coupled to Standard Model (SM) neutrinos give rise to an abundance of sterile neutrinos through the sterile neutrinos mixing with the SM. Specifically, in the mass range of MeV-GeV and coupling of $g sim 10^{-6} - 10^{-2}$, the decay of this new vector boson in the early universe produces a sufficient quantity of sterile neutrinos to account for the observed dark matter abundance. Interestingly, this can be achieved within a natural extension of the SM gauge group, such as a gauged $L_mu-L_tau$ number, without any tree-level coupling between the new vector boson and the sterile neutrino states. Such new leptonic interactions might also be at the origin of the well-known discrepancy associated with the anomalous magnetic moment of the muon.
We introduce DRAKE, a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. DRAKE comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. We review the general motivation for these approaches and, for illustration, highlight three concrete classes of models where kinetic and chemical decoupling are intertwined in a way that quantitatively impacts the relic density: i) dark matter annihilation via a narrow resonance, ii) Sommerfeld-enhanced annihilation and iii) `forbidden annihilation to final states that are kinematically inaccessible at threshold. We discuss all these cases in some detail, demonstrating that the commonly adopted, traditional treatment can result in an estimate of the relic density that is wrong by up to an order of magnitude. The public release of DRAKE, along with several examples of how to calculate the relic density in concrete models, is provided at drake.hepforge.org
We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by $sim 30 - 100%$ with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach $sim 2.5$ TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.