Do you want to publish a course? Click here

A note on Riley polynomials of $2$-bridge knots

92   0   0.0 ( 0 )
 Added by Teruaki Kitano
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this short note we show the existence of an epimorphism between groups of $2$-bridge knots by means of an elementary argument using the Riley polynomial. As a corollary, we give a classification of $2$-bridge knots by Riley polynomials.



rate research

Read More

In this paper we show that the twisted Alexander polynomial associated to a parabolic representation determines fiberedness and genus of a wide class of 2-bridge knots. As a corollary we give an affirmative answer to a conjecture of Dunfield, Friedl and Jackson for infinitely many hyperbolic knots.
140 - Mikami Hirasawa 2008
Let $H(p)$ be the set of 2-bridge knots $K$ whose group $G$ is mapped onto a non-trivial free product, $Z/2 * Z/p$, $p$ being odd. Then there is an algebraic integer $s_0$ such that for any $K$ in $H(p)$, $G$ has a parabolic representation $rho$ into $SL(2, Z[s_0]) subset SL(2,C)$. Let $Delta(t)$ be the twisted Alexander polynomial associated to $rho$. Then we prove that for any $K$ in $H(p)$, $Delta(1)=-2s_0^{-1}$ and $Delta(-1)=-2s_0^{-1}mu^2$, where $s_0^{-1}, mu in Z[s_0]$. The number $mu$ can be recursively evaluated.
For a virtual knot $K$ and an integer $rgeq 0$, the $r$-covering $K^{(r)}$ is defined by using the indices of chords on a Gauss diagram of $K$. In this paper, we prove that for any finite set of virtual knots $J_0,J_2,J_3,dots,J_m$, there is a virtual knot $K$ such that $K^{(r)}=J_r$ $(r=0mbox{ and }2leq rleq m)$, $K^{(1)}=K$, and otherwise $K^{(r)}=J_0$.
We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combined with previous results from [KP10] and [BKP14]. We also give a sharp lower bound for the lexicographic degree of any knot, using real polynomial curves properties.
214 - Jennifer Schultens 2001
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is greater than or equal to the product of k and the bridge number of J; 2) If K is a composite knot (this is the case k = 1), then the bridge number of K is one less than the sum of the bridge numbers of J and L.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا