Do you want to publish a course? Click here

An information-based classification of Elementary Cellular Automata

119   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

A novel, information-based classification of elementary cellular automata is proposed that circumvents the problems associated with isolating whether complexity is in fact intrinsic to a dynamical rule, or if it arises merely as a product of a complex initial state. Transfer entropy variations processed by the system split the 256 elementary rules into three information classes, based on sensitivity to initial conditions. These classes form a hierarchy such that coarse-graining transitions observed among elementary cellular automata rules predominately occur within each information- based class, or much more rarely, down the hierarchy.



rate research

Read More

In this paper we study the family of freezing cellular automata (FCA) in the context of asynchronous updating schemes. A cellular automaton is called freezing if there exists an order of its states, and the transitions are only allowed to go from a lower to a higher state. A cellular automaton is asynchronous if at each time-step only one cell is updated. Given configuration, we say that a cell is unstable if there exists a sequential updating scheme that changes its state. In this context, we define the problem AsyncUnstability, which consists in deciding if a cell is unstable or not. In general AsyncUnstability is in NP, and we study in which cases we can solve the problem by a more efficient algorithm. We begin showing that AsyncUnstability is in NL for any one-dimensional FCA. Then we focus on the family of life-like freezing CA (LFCA), which is a family of two-dimensional two-state FCA that generalize the freezing version of the game of life, known as life without death. We study the complexity of AsyncUnstability for all LFCA in the triangular and square grids, showing that almost all of them can be solved in NC, except for one rule for which the problem is NP-complete.
A method of quantization of classical soliton cellular automata (QSCA) is put forward that provides a description of their time evolution operator by means of quantum circuits that involve quantum gates from which the associated Hamiltonian describing a quantum chain model is constructed. The intrinsic parallelism of QSCA, a phenomenon first known from quantum computers, is also emphasized.
A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.
Gauge-invariance is a fundamental concept in Physics---known to provide mathematical justification for the fundamental forces. In this paper, we provide discrete counterparts to the main gauge theoretical concepts directly in terms of Cellular Automata. More precisely, the notions of gauge-invariance and gauge-equivalence in Cellular Automata are formalized. A step-by-step gauging procedure to enforce this symmetry upon a given Cellular Automaton is developed, and three examples of gauge-invariant Cellular Automata are examined.
The complexity of cellular automata is traditionally measured by their computational capacity. However, it is difficult to choose a challenging set of computational tasks suitable for the parallel nature of such systems. We study the ability of automata to emulate one another, and we use this notion to define such a set of naturally emerging tasks. We present the results for elementary cellular automata, although the core ideas can be extended to other computational systems. We compute a graph showing which elementary cellular automata can be emulated by which and show that certain chaotic automata are the only ones that cannot emulate any automata non-trivially. Finally, we use the emulation notion to suggest a novel definition of chaos that we believe is suitable for discrete computational systems. We believe our work can help design parallel computational systems that are Turing-complete and also computationally efficient.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا