Do you want to publish a course? Click here

Balancing Speed and Coverage by Sequential Seeding in Complex Networks

64   0   0.0 ( 0 )
 Added by Jaroslaw Jankowski
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Information spreading in complex networks is often modeled as diffusing information with certain probability from nodes that possess it to their neighbors that do not. Information cascades are triggered when the activation of a set of initial nodes (seeds) results in diffusion to large number of nodes. Here, several novel approaches for seed initiation that replace the commonly used activation of all seeds at once with a sequence of initiation stages are introduced. Sequential strategies at later stages avoid seeding highly ranked nodes that are already activated by diffusion active between stages. The gain arises when a saved seed is allocated to a node difficult to reach via diffusion. Sequential seeding and a single stage approach are compared using various seed ranking methods and diffusion parameters on real complex networks. The experimental results indicate that, regardless of the seed ranking method used, sequential seeding strategies deliver better coverage than single stage seeding in about 90% of cases. Longer seeding sequences tend to activate more nodes but they also extend the duration of diffusion. Various variants of sequential seeding resolve the trade-off between the coverage and speed of diffusion differently.



rate research

Read More

We consider here information spread which propagates with certain probability from nodes just activated to their not yet activated neighbors. Diffusion cascades can be triggered by activation of even a small set of nodes. Such activation is commonly performed in a single stage. A novel approach based on sequential seeding is analyzed here resulting in three fundamental contributions. First, we propose a coordinated execution of randomized choices to enable precise comparison of different algorithms in general. We apply it here when the newly activated nodes at each stage of spreading attempt to activate their neighbors. Then, we present a formal proof that sequential seeding delivers at least as large coverage as the single stage seeding does. Moreover, we also show that, under modest assumptions, sequential seeding achieves coverage provably better than the single stage based approach using the same number of seeds and node ranking. Finally, we present experimental results showing how single stage and sequential approaches on directed and undirected graphs compare to the well-known greedy approach to provide the objective measure of the sequential seeding benefits. Surprisingly, applying sequential seeding to a simple degree-based selection leads to higher coverage than achieved by the computationally expensive greedy approach currently considered to be the best heuristic.
There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal evolution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.
Network science provides effective tools to model and analyze complex systems. However, the increasing size of real-world networks becomes a major hurdle in order to understand their structure and topological features. Therefore, mapping the original network into a smaller one while preserving its information is an important issue. Extracting the so-called backbone of a network is a very challenging problem that is generally handled either by coarse-graining or filter-based methods. Coarse-graining methods reduce the network size by grouping similar nodes, while filter-based methods prune the network by discarding nodes or edges based on a statistical property. In this paper, we propose and investigate two filter-based methods exploiting the overlapping community structure in order to extract the backbone in weighted networks. Indeed, highly connected nodes (hubs) and overlapping nodes are at the heart of the network. In the first method, called overlapping nodes ego backbone, the backbone is formed simply from the set of overlapping nodes and their neighbors. In the second method, called overlapping nodes and hubs backbone, the backbone is formed from the set of overlapping nodes and the hubs. For both methods, the links with the lowest weights are removed from the network as long as a backbone with a single connected component is preserved. Experiments have been performed on real-world weighted networks originating from various domains (social, co-appearance, collaboration, biological, and technological) and different sizes. Results show that both backbone extraction methods are quite similar. Furthermore, comparison with the most influential alternative filtering method demonstrates the greater ability of the proposed backbones extraction methods to uncover the most relevant parts of the network.
Identification of communities in complex networks has become an effective means to analysis of complex systems. It has broad applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network structure analysis. These schemes, however, have inherent drawbacks and are often inadequate to properly capture complex organizational structures in real networks. We introduce a new scheme and effective approach for identifying complex network structures using a mixture of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large semantic association network of commonly used words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Community detection and link prediction are both of great significance in network analysis, which provide very valuable insights into topological structures of the network from different perspectives. In this paper, we propose a novel community detection algorithm with inclusion of link prediction, motivated by the question whether link prediction can be devoted to improving the accuracy of community partition. For link prediction, we propose two novel indices to compute the similarity between each pair of nodes, one of which aims to add missing links, and the other tries to remove spurious edges. Extensive experiments are conducted on benchmark data sets, and the results of our proposed algorithm are compared with two classes of baseline. In conclusion, our proposed algorithm is competitive, revealing that link prediction does improve the precision of community detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا