No Arabic abstract
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from RHESSI. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.
The GOES X1 flare SOL2014-10-25T17:08:00 was a three-ribbon solar flare observed with IRIS in the near and far ultraviolet. One of the flare ribbons crossed a sunspot umbra, producing a dramatic, $sim1000$% increase in the near-ultraviolet (NUV) continuum radiation. We comprehensively analyze the ultraviolet spectral data of the umbral flare brightenings, which provide new challenges for radiative-hydrodynamic modeling of the chromospheric velocity field and the white-light continuum radiation. The emission line profiles in the umbral flare brightenings exhibit redshifts and profile asymmetries, but these are significantly smaller than in another, well-studied X-class solar flare. We present a ratio of the NUV continuum intensity to the Fe II 2814.45 Ang intensity. This continuum-to-line ratio is a new spectral diagnostic of significant heating at high column mass (log $m/$[g cm$^{-2}] >-2$) during solar flares because the continuum and emission line radiation originate from relatively similar temperatures but moderately different optical depths. The full spectral readout of these IRIS data also allow for a comprehensive survey of the flaring NUV landscape: in addition to many lines of Fe II and Cr II, we identify a new solar flare emission line, He I $lambda2829.91$ (as previously identified in laboratory and early-type stellar spectra). The Fermi/GBM hard X-ray data provide inputs to radiative-hydrodynamic models (which will be presented in Paper II) in order to better understand the large continuum-to-line ratios, the origin of the white-light continuum radiation, and the role of electron beam heating in the low atmosphere.
We present high spatial resolution observations of chromospheric evaporation in the flare SOL2014-03-29T17:48. Interface Region Imaging Spectrograph (IRIS) observations of the FeXXI 1354.1 A line indicate evaporating plasma at a temperature of 10 MK along the flare ribbon during the flare peak and several minutes into the decay phase with upflow velocities between 30 km s$^{-1}$ and 200 km s$^{-1}$. Hard X-ray (HXR) footpoints were observed by RHESSI for two minutes during the peak of the flare. Their locations coincided with the locations of the upflows in parts of the southern flare ribbon but the HXR footpoint source preceded the observation of upflows in FeXXI by 30-75 seconds. However, in other parts of the southern ribbon and in the northern ribbon the observed upflows were not coincident with a HXR source in time nor space, most prominently during the decay phase. In this case evaporation is likely caused by energy input via a conductive flux that is established between the hot (25 MK) coronal source, which is present during the whole observed time-interval, and the chromosphere. The presented observations suggest that conduction may drive evaporation not only during the decay phase but also during the flare peak. Electron beam heating may only play a role in driving evaporation during the initial phases of the flare.
Understanding nonthermal particle generation, transport, and escape in solar flares requires detailed quantification of the particle evolution in the realistic 3D domain where the flare takes place. Rather surprisingly, apart of standard flare scenario and integral characteristics of the nonthermal electrons, not much is known about actual evolution of nonthermal electrons in the 3D spatial domain. This paper attempts to begin to remedy this situation by creating sets of evolving 3D models, the synthesized emission from which matches the evolving observed emission. Here we investigate two contrasting flares: a dense, coronal-thick-target flare SOL2002-04-12T17:42, that contained a single flare loop observed in both microwave and X-ray, and a more complex flare, SOL2015-06-22T17:50, that contained at least four distinct flaring loops needed to consistently reproduce the microwave and X-ray emission. Our analysis reveals differing evolution pattern of the nonthermal electrons in the dense and tenuous loops; however, both of which imply the central role of resonant wave-particle interaction with turbulence. These results offer new constraints for theory and models of the particle acceleration and transport in solar flares.
Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the NRL flux tube code. We calculated the collisional heating rate from the particle transport code, which is more accurate than those based on approximate analytical solutions. We used a realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (vs. chromosphere), a larger downward conductive flux, and thus a stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced X-ray emission.
The Interface Region Imaging Spectrometer (IRIS) is the first solar instrument to observe $sim 10$ MK plasma at subarcsecond spatial resolution through imaging spectroscopy of the Fe XXI $lambda$1354.1 forbidden line. IRIS observations of the X1 class flare that occurred on 2014 March 29 at 17:48 UT reveal Fe XXI emission from both the flare ribbons and the post-flare loop arcade. Fe XXI appears at all of the chromospheric ribbon sites, although typically with a delay of one raster (75 seconds) and sometimes offset by up to 1$^{primeprime}$. 100--200 km s$^{-1}$ blue-shifts are found at the brightest ribbons, suggesting hot plasma upflow into the corona. The Fe XXI ribbon emission is compact with a spatial extent of $< 2^{primeprime}$, and can extend beyond the chromospheric ribbon locations. Examples are found of both decreasing and increasing blue-shift in the direction away from the ribbon locations, and blue-shifts were present for at least 6 minutes after the flare peak. The post-flare loop arcade, seen in Atmospheric Imaging Assembly (AIA) 131 AA filtergram images that are dominated by Fe XXI, exhibited bright loop-tops with an asymmetric intensity distribution. The sizes of the loop-tops are resolved by IRIS at $ge 1^{primeprime}$, and line widths in the loop-tops are not broader than in the loop-legs suggesting the loop-tops are not sites of enhanced turbulence. Line-of-sight speeds in the loop arcade are typically $<10$ km s$^{-1}$, and mean non-thermal motions fall from 43 km s$^{-1}$ at the flare peak to 26 km s$^{-1}$ six minutes later. If the average velocity in the loop arcade is assumed to be at rest, then it implies a new reference wavelength for the Fe XXI line of $1354.106pm 0.023$ AA.