We summarise the main features of VINCIAs antenna-based treatment of QCD initial- and final-state showers, which includes iterated tree-level matrix-element corrections and automated evaluations of perturbative shower uncertainties. The latter are computed on the fly and are cast as a set of alternative weights for each generated event. The resulting algorithm has been made publicly available as a plug-in to the PYTHIA 8 event generator.
We present a complete set of helicity-dependent 2->3 antenna functions for QCD initial- and final- state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2->2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.
We present algorithms that interleave photon radiation from the final state and the initial state with the QCD evolution in the antenna-based Vincia parton shower. One of the algorithms incorporates the complete soft and collinear structure associated with photon emission, but may be computationally expensive, while the other approximates the soft structure at a lower cost. Radiation from fermions and W bosons is included, and a strategy for photon radiation off leptons below the hadronization scale is set up. We show results of the application of the shower algorithms to Drell-Yan and WW production at the LHC, showing the impact of the inclusion of the full soft structure and treatment of radiation off W bosons.
We here present an extension of the CKKW-L multi-jet merging technique to so-called sector showers as implemented in the Vincia antenna shower. The bijective nature of sector showers allows for efficient multi-jet merging at high multiplicities, as any given configuration possesses only a single history, while retaining the accuracy of the CKKW-L technique. Our method reduces the factorial scaling of the number of parton shower histories to a constant of a single history per colour-ordered final state. We show that the complexity of constructing shower histories is reduced to an effective linear scaling with the number of final-state particles. Moreover, we demonstrate that the overall event generation time and the memory footprint of our implementation remain approximately constant when including additional jets. We compare both to the conventional CKKW-L implementation in Pythia and gain a first estimate of renormalisation scale uncertainties at high merged multiplicities. As a proof of concept, we show parton-level predictions for vector boson production in proton-proton collisions with up to nine hard jets using the new implementation. Despite its much simpler nature, we dub the new technique MESS, in analogy to the conventional MEPS nomenclature.
QCD instantons are arguably the best motivated yet unobserved nonperturbative effects predicted by the Standard Model. A discovery and detailed study of instanton-generated processes at colliders would provide a new window into the phenomenological exploration of QCD and a vastly improved fundamental understanding of its non-perturbative dynamics. Building on the optical theorem, we numerically calculate the total instanton cross-section from the elastic scattering amplitude, also including quantum effects arising from resummed perturbative exchanges between hard gluons in the initial state, thereby improving in accuracy on previous results. Although QCD instanton processes are predicted to be produced with a large scattering cross-section at small centre-of-mass partonic energies, discovering them at hadron colliders is a challenging task that requires dedicated search strategies. We evaluate the sensitivity of high-luminosity LHC runs, as well as low-luminosity LHC and Tevatron runs. We find that LHC low-luminosity runs in particular, which do not suffer from large pileup and trigger thresholds, show a very good sensitivity for discovering QCD instanton-generated processes.
We examine, as model-independently as possible, the production of bileptons at hadron colliders. When a particular model is necessary or useful, we choose the 3-3-1 model. We consider a variety of processes: q anti-q -> Y^{++} Y^{--}, u anti-d -> Y^{++} Y^{-}, anti-u d -> Y^+ Y^{--}, q anti-q -> Y^{++} e^{-} e^{-}, q anti-q -> phi^{++} phi^{--}, u anti-d -> -> phi^{++} phi^{-}, and anti-u d -> phi^{+} phi^{--}, where Y and phi are vector and scalar bileptons, respectively. Given the present low-energy constraints, we find that at the Tevatron, vector bileptons are unobservable, while light scalar bileptons (M_phi <= 300 GeV) are just barely observable. At the LHC, the reach is extended considerably: vector bileptons of mass M_Y <= 1 TeV are observable, as are scalar bileptons of mass M_phi <= 850 GeV.