Do you want to publish a course? Click here

Magnetization oscillations and waves driven by pure spin currents

467   0   0.0 ( 0 )
 Added by Vladislav Demidov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent advances in the studies of pure spin currents - flows of angular momentum (spin) not accompanied by the electric currents - have opened new horizons for the emerging technologies based on the electrons spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this characteristic enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different magnetic nanosystems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.



rate research

Read More

We study the depinning of domain walls by pure diffusive spin currents in a nonlocal spin valve structure based on two ferromagnetic permalloy elements with copper as the nonmagnetic spin conduit. The injected spin current is absorbed by the second permalloy structure with a domain wall and from the dependence of the wall depinning field on the spin current density we find an efficiency of 6*10^{-14}T/(A/m^2), which is more than an order of magnitude larger than for conventional current induced domain wall motion. Theoretically we reproduce this high efficiency, which arises from the surface torques exerted by the absorbed spin current that lead to efficient depinning.
Magnetic droplets are dynamical solitons that can be generated by locally suppressing the dynamical damping in magnetic films with perpendicular anisotropy. To date, droplets have been observed only in nanocontact spin-torque oscillators operated by spin-polarized electrical currents. Here, we experimentally demonstrate that magnetic droplets can be nucleated and sustained by pure spin currents in nanoconstriction-based spin Hall devices. Micromagnetic simulations support our interpretation of the data, and indicate that in addition to the stationary droplets, propagating solitons can be also generated in the studied system, which can be utilized for the information transmission in spintronic applications.
The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and lattice strains. The simulations have been performed for the 2 nm thick Fe81Ga19 film dynamically strained by longitudinal and transverse standing waves with various frequencies, which span a wide range around the resonance frequency nu_res of coherent magnetization precession in unstrained Fe81Ga19 film. It is found that standing elastic waves give rise to complex local magnetization dynamics and spatially inhomogeneous dynamic magnetic patterns. The spatio-temporal distributions of the magnetization oscillations in standing elastic waves have the form of standing spin waves with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at the nodes of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state regime, the magnetization oscillates with the frequency of elastic wave, except for the case of longitudinal waves with frequencies well below nu_res, where the magnetization precesses with a variable frequency strongly exceeding the wave frequency. The precession amplitude at the antinodes of standing spin waves strongly increases when the frequency of elastic wave becomes close to nu_res. The results obtained for the magnetization dynamics driven by elastic waves are used to calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal. Importantly, the transverse charge current created by the spin current via the inverse spin Hall effect is high enough to be measured experimentally.
Hydrogen adatoms are shown to generate magnetic moments inside single layer graphene. Spin transport measurements on graphene spin valves exhibit a dip in the non-local spin signal as a function of applied magnetic field, which is due to scattering (relaxation) of pure spin currents by exchange coupling to the magnetic moments. Furthermore, Hanle spin precession measurements indicate the presence of an exchange field generated by the magnetic moments. The entire experiment including spin transport is performed in an ultrahigh vacuum chamber, and the characteristic signatures of magnetic moment formation appear only after hydrogen adatoms are introduced. Lattice vacancies also demonstrate similar behavior indicating that the magnetic moment formation originates from pz-orbital defects.
Magnetic bimeron composed of two merons is a topological counterpart of magnetic skyrmion in in-plane magnets, which can be used as the nonvolatile information carrier in spintronic devices. Here we analytically and numerically study the dynamics of ferromagnetic bimerons driven by spin currents and magnetic fields. Numerical simulations demonstrate that two bimerons with opposite signs of topological numbers can be created simultaneously in a ferromagnetic thin film via current-induced spin torques. The current-induced spin torques can also drive the bimeron and its speed is analytically derived, which agrees with the numerical results. Since the bimerons with opposite topological numbers can coexist and have opposite drift directions, two-lane racetracks can be built in order to accurately encode the data bits. In addition, the dynamics of bimerons induced by magnetic field gradients and alternating magnetic fields are investigated. It is found that the bimeron driven by alternating magnetic fields can propagate along a certain direction. Moreover, combining a suitable magnetic field gradient, the Magnus-force-induced transverse motion can be completely suppressed, which implies that there is no skyrmion Hall effect. Our results are useful for understanding of the bimeron dynamics and may provide guidelines for building future bimeron-based spintronic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا