No Arabic abstract
Searching for the first topological superfluid (TSF) remains a primary goal of modern science. Here we study the system of attractively interacting fermions hopping in a square lattice with any linear combinations of Rashba or Dresselhaus spin-orbit coupling (SOC) in a normal Zeeman field. By imposing self-consistence equations at half filling, we find there are 3 phases: Band insulator ( BI ), Superfluid (SF) and Topological superfluid (TSF) with a Chern number $ C=2 $. The $ C=2 $ TSF happens in small Zeeman fields and weak interactions which is in the experimentally most easily accessible regime. The transition from the BI to the SF is a first order one due to the multi-minima structure of the ground state energy landscape. There is a new class of topological phase transition from the SF to the $ C=2 $ TSF at the low critical field $ h_{c1} $, then another one from the $ C=2 $ TSF to the BI at the upper critical field $ h_{c2} $. We derive effective actions to describe the two new classes of topological phase transitions, then use them to study the Majorana edge modes and the zero modes inside the vortex core of the $ C=2 $ TSF near both $ h_{c1} $ and $ h_{c2} $, especially explore their spatial and spin structures. We find the edge modes decay into the bulk with oscillating behaviors and determine both the decay and oscillating lengths. We compute the bulk spectra and map out the Berry Curvature distribution in momentum space near both $ h_{c1} $ and $ h_{c2} $. We also elaborate some intriguing bulk-Berry curvature-edge-vortex correspondences. Experimental implications in both 2d non-centrosymmetric materials under a periodic substrate and cold atoms in an optical lattice are given.
The realization of spin-orbit coupling (SOC) in ultracold atoms has triggered an intensive exploring of topological superfluids in the degenerate Fermi gases based on mean-field theory, which has not yet been reported in experiments. Here, we demonstrate the topological phase transitions in the system via the numerically exact quantum Monte Carlo method. Without prior assumptions, our unbiased real-space calculation shows that spin-orbit coupling can stabilize an unconventional pairing in the weak SOC regime, in which the Fulde-Ferrell-Larkin-Ovchinnikov pairing coexists with the Bardeen-Cooper-Schrieffer pairing. Furthermore, we use the jumps in the spin polarization at the time-reversal invariant momenta to qualify the topological phase transition, where we find the critical exponent deviated from the mean-field theory. Our results pave the way for the searching of unconventional pairing and topological superfluids with degenerate Fermi gases.
While spin-orbit coupling (SOC), an essential mechanism underlying quantum phenomena from the spin Hall effect to topological insulators, has been widely studied in well-isolated Hermitian systems, much less is known when the dissipation plays a major role in spin-orbit-coupled quantum systems. Here, we realize dissipative spin-orbit-coupled bands filled with ultracold fermions, and observe a parity-time ($mathcal{PT}$) symmetry-breaking transition as a result of the competition between SOC and dissipation. Tunable dissipation, introduced by state-selective atom loss, enables the energy gap, opened by SOC, to be engineered and closed at the critical dissipation value, the so-called exceptional point (EP). The realized EP of the non-Hermitian band structure exhibits chiral response when the quantum state changes near the EP. This topological feature enables us to tune SOC and dissipation dynamically in the parameter space, and observe the state evolution is direction-dependent near the EP, revealing topologically robust spin transfer between different quantum states when the quantum state encircles the EP. This topological control of quantum states for non-Hermitian fermions provides new methods of quantum control, and also sets the stage for exploring non-Hermitian topological states with SOC.
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects, motivating research into potential alternatives. Here we demonstrate that SOC can be engineered to occur naturally in a one-dimensional fermionic 87Sr optical lattice clock (OLC). In contrast to previous SOC experiments, in this work the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states. We use clock spectroscopy to prepare lattice band populations, internal electronic states, and quasimomenta, as well as to produce SOC dynamics. The exceptionally long lifetime of the excited clock state (160 s) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and Van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases of matter.
We consider possibilities to control dynamics of solitons of two types, maintained by the combination of cubic attraction and spin-orbit coupling (SOC) in a two-component system, namely, semi-dipoles (SDs) and mixed modes (MMs), by making the relative strength of the cross-attraction, gamma, a function of time periodically oscillating around the critical value, gamma = 1, which is an SD/MM stability boundary in the static system. The structure of SDs is represented by the combination of a fundamental soliton in one component and localized dipole mode in the other, while MMs combine fundamental and dipole terms in each component. Systematic numerical analysis reveals a finite bistability region for the SDs and MMs around gamma = 1, which does not exist in the absence of the periodic temporal modulation (management), as well as emergence of specific instability troughs and stability tongues for the solitons of both types, which may be explained as manifestations of resonances between the time-periodic modulation and intrinsic modes of the solitons. The system can be implemented in Bose-Einstein condensates, and emulated in nonlinear optical waveguides.
Majorana fermions, quantum particles that are their own anti-particles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently Majorana fermions have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing between two Fermions with opposite momenta (textit{% i.e.}, zero total momentum). On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, were predicted 50 years ago and then widely studied in many branches of physics. However, whether FFLO superconductors can also support Majorana fermions has not been explored. Here we show that Majorana fermions can exist in certain types of gapped FFLO states, yielding a new topological quantum matter: topological FFLO superfluids/superconductors. We demonstrate the existence of such topological FFLO superfluids and the associated Majorana fermions using spin-orbit coupled degenerate Fermi gases and derive their physical parameter regions. The potential implementation of topological FFLO superconductors in semiconductor/superconductor heterostructures are also discussed.