Do you want to publish a course? Click here

Model Checking Spatial Logics for Closure Spaces

299   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Spatial aspects of computation are becoming increasingly relevant in Computer Science, especially in the field of collective adaptive systems and when dealing with systems distributed in physical space. Traditional formal verification techniques are well suited to analyse the temporal evolution of programs; however, properties of space are typically not taken into account explicitly. We present a topology-based approach to formal verification of spatial properties depending upon physical space. We define an appropriate logic, stemming from the tradition of topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities describe neighbourhood. We lift the topological definitions to the more general setting of closure spaces, also encompassing discrete, graph-based structures. We extend the framework with a spatial surrounded operator, a propagation operator and with some collective operators. The latter are interpreted over arbitrary sets of points instead of individual points in space. We define efficient model checking procedures, both for the individual and the collective spatial fragments of the logic and provide a proof-of-concept tool.



rate research

Read More

This volume contains the proceedings of the First Workshop on Logics and Model-checking for self-* systems (MOD* 2014). The worshop took place in Bertinoro, Italy, on 12th of September 2014, and was a satellite event of iFM 2014 (the 11th International Conference on Integrated Formal Methods). The workshop focuses on demonstrating the applicability of Formal Methods on modern complex systems with a high degree of self-adaptivity and reconfigurability, by bringing together researchers and practitioners with the goal of pushing forward the state of the art on logics and model checking.
Predicate logic is the premier choice for specifying classes of relational structures. Homomorphisms are key to describing correspondences between relational structures. Questions concerning the interdependencies between these two means of characterizing (classes of) structures are of fundamental interest and can be highly non-trivial to answer. We investigate several problems regarding the homomorphism closure (homclosure) of the class of all (finite or arbitrary) models of logical sentences: membership of structures in a sentences homclosure; sentence homclosedness; homclosure characterizability in a logic; normal forms for homclosed sentences in certain logics. For a wide variety of fragments of first- and second-order predicate logic, we clarify these problems computational properties.
We study complexity of the model-checking problems for LTL with registers (also known as freeze LTL) and for first-order logic with data equality tests over one-counter automata. We consider several classes of one-counter automata (mainly deterministic vs. nondeterministic) and several logical fragments (restriction on the number of registers or variables and on the use of propositional variables for control locations). The logics have the ability to store a counter value and to test it later against the current counter value. We show that model checking over deterministic one-counter automata is PSPACE-complete with infinite and finite accepting runs. By constrast, we prove that model checking freeze LTL in which the until operator is restricted to the eventually operator over nondeterministic one-counter automata is undecidable even if only one register is used and with no propositional variable. As a corollary of our proof, this also holds for first-order logic with data equality tests restricted to two variables. This makes a difference with the facts that several verification problems for one-counter automata are known to be decidable with relatively low complexity, and that finitary satisfiability for the two logics are decidable. Our results pave the way for model-checking memoryful (linear-time) logics over other classes of operational models, such as reversal-bounded counter machines.
Closure spaces are a generalisation of topological spaces obtained by removing the idempotence requirement on the closure operator. We adapt the standard notion of bisimilarity for topological models, namely Topo-bisimilarity, to closure models -- we call the resulting equivalence CM-bisimilarity -- and refine it for quasi-discrete closure models. We also define two additional notions of bisimilarity that are based on paths on space, namely Path-bisimilarity and Compatible Path-bisimilarity, CoPa-bisimilarity for short. The former expresses (unconditional) reachability, the latter refines it in a way that is reminishent of Stuttering Equivalence on transition systems. For each bisimilarity we provide a logical characterisation, using variants of the Spatial Logic for Closure Spaces (SLCS). We also address the issue of (space) minimisation via the three equivalences.
The topological interpretation of modal logics provides descriptive languages and proof systems for reasoning about points of topological spaces. Recent work has been devoted to model checking of spatial logics on discrete spatial structures, such as finite graphs and digital images, with applications in various case studies including medical image analysis. These recent developments required a generalisation step, from topological spaces to closure spaces. In this work we initiate the study of bisimilarity and minimisation algorithms that are consistent with the closure spaces semantics. For this purpose we employ coalgebraic models. We present a coalgebraic definition of bisimilarity for quasi-discrete models, which is adequate with respect to a spatial logic with reachability operators, complemented by a free and open-source minimisation tool for finite models. We also discuss the non-quasi-discrete case, by providing a generalisation of the well-known set-theoretical notion of topo-bisimilarity, and a categorical definition, in the same spirit as the coalgebraic rendition of neighbourhood frames, but employing the covariant power set functor, instead of the contravariant one. We prove its adequacy with respect to infinitary modal logic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا