ALMA high spatial resolution observations of the dense molecular region of NGC 6302


Abstract in English

The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. Accurately tracing the molecule-rich equatorial regions of post-AGB stars can give valuable insight into the ejection mechanisms at work. We investigate the physical conditions, structure and velocity field of the dense molecular region of the planetary nebula NGC 6302 by means of ALMA band 7 interferometric maps. The high spatial resolution of the $^{12}$CO and $^{13}$CO J=3-2 ALMA data allows for an analysis of the geometry of the ejecta in unprecedented detail. We built a spatio-kinematical model of the molecular region with the software SHAPE and performed detailed non-LTE calculations of excitation and radiative transfer with the SHAPEMOL plug-in. We find that the molecular region consists of a massive ring out of which a system of fragments of lobe walls emerge and enclose the base of the lobes visible in the optical. The general properties of this region are in agreement with previous works, although the much greater spatial resolution of the data allows for a very detailed description. We confirm that the mass of the molecular region is 0.1 M$_{odot}$. Additionally, we report a previously undetected component at the nebular equator, an inner, younger ring inclined $sim$60$^circ$ with respect to the main ring, showing a characteristic radius of 7.5$times$10$^{16}$ cm, a mass of 2.7$times$10$^{-3}$ M$_{odot}$, and a counterpart in optical images of the nebula. This inner ring has the same kinematical age as the northwest optical lobes, implying it was ejected approximately at the same time, hundreds of years after the ejection of the bulk of the molecular ring-like region. We discuss a sequence of events leading to the formation of the molecular and optical nebulae, and briefly speculate on the origin of this intriguing inner ring.

Download