No Arabic abstract
We present ALMA observations of the inner 1 (1.2 kpc) of the Circinus galaxy, the nearest Seyfert. We target CO (1-0) in the region associated with a well-known multiphase outflow driven by the central active galactic nucleus (AGN). While the geometry of Circinus and its outflow make disentangling the latter difficult, we see indications of outflowing molecular gas at velocities consistent with the ionized outflow. We constrain the mass of the outflowing molecular gas to be 1.5e5 -5.1e6 solar masses, yielding a molecular outflow rate of 0.35-12.3 solar masses per year. The values within this range are comparable to the star formation rate in Circinus, indicating that the outflow indeed regulates star formation to some degree. The molecular outflow in Circinus is considerably lower in mass and energetics than previously-studied AGN-driven outflows, especially given its high ratio of AGN luminosity to bolometric luminosity. The molecular outflow in Circinus is, however, consistent with some trends put forth in Cicone et al. (2014), including a linear relation between kinetic power and AGN luminosity, as well as its momentum rate vs. bolometric luminosity (although the latter places Circinus among the starburst galaxies in that sample). We detect additional molecular species including CN and C17O.
We investigate if the active galactic nucleus (AGN) of Mrk 590, whose supermassive black hole was until recently highly accreting, is turning off due to a lack of central gas to fuel it. We analyse new sub-arcsecond resolution ALMA maps of the $^{12}$CO(3-2) line and 344 GHz continuum emission in Mrk 590. We detect no $^{12}$CO(3-2) emission in the inner 150 pc, constraining the central molecular gas mass to $M({rm H_2}) lesssim 1.6 times 10^5, {M_{odot}}$, no more than a typical giant molecular gas cloud, for a CO luminosity to gas mass conversion factor of $alpha_{rm CO}sim 0.8,{M_{odot},rm (K ,km,s^{-1},pc^{2}})^{-1}$. However, there is still potentially enough gas to fuel the black hole for another $2.6 times 10^5$ years assuming Eddington-limited accretion. We therefore cannot rule out that the AGN may just be experiencing a temporary feeding break, and may turn on again in the near future. We discover a ring-like structure at a radius of $sim 1$ kpc, where a gas clump exhibiting disturbed kinematics and located just $sim 200$ pc west of the AGN, may be refueling the centre. Mrk 590 does not have significantly less gas than other nearby AGN host galaxies at kpc scales, confirming that gas reservoirs at these scales provide no direct indication of on-going AGN activity and accretion rates. Continuum emission detected in the central 150 pc likely originates from warm AGN-heated dust, although contributions from synchrotron and free-free emission cannot be ruled out.
We imaged with ALMA and ARGOS/LUCI the molecular gas and the dust and stellar continuum in XID2028, an obscured QSO at z=1.593, where the presence of a massive outflow in the ionized gas component traced by the [O III]5007 emission has been resolved up to 10 kpc. This target represents a unique test case to study QSO feedback in action at the peak epoch of AGN-galaxy coevolution. The QSO has been detected in the CO(5-4) transition and in the 1.3mm continuum, at ~30 and ~20 {sigma} significance respectively, with both emissions confined in the central (<4 kpc) radius area. Our analysis suggests the presence of a fast rotating molecular disc (v~400 km/s) on very compact scales, and well inside the galaxy extent seen in the rest-frame optical light (~10 kpc, as inferred from the LUCI data). Adding available measurements in additional two CO transitions, CO(2-1) and CO(3-2), we could derive a total gas mass of ~10$^{10}$ M$_odot$, thanks to a critical assessment of CO excitation and the comparison with Rayleigh-Jeans continuum estimate. This translates into a very low gas fraction (<5%) and depletion time scales of 40-75 Myr, reinforcing the result of atypical gas consumption conditions in XID2028, possibly due to feedback effects on the host galaxy. Finally, we also detect at ~5{sigma} the presence of high velocity CO gas, which we interpret as a signature of galaxy-scale molecular outflow, spatially coincident with the ionised gas outflow. XID2028 represents therefore a unique case where the measurement of total outflowing mass (~500-800 M$_odot$/yr) including the molecular and atomic components, in both the ionised and neutral phases, has been attempted for a high-z QSO.
We report on the coexistence of powerful gas outflows observed in millimeter and X-ray data of the Radio-Loud Narrow Line Seyfert 1 Galaxy IRAS 17020+4544. Thanks to the large collecting power of the Large Millimeter Telescope, a prominent line arising from the 12CO(1-0) transition was revealed in recent observations of this source. The complex profile is composed by a narrow double-peak line and a broad wing. While the double-peak structure may be arising in a disk of molecular material, the broad wing is interpreted as the signature of a massive outflow of molecular gas with an approximate bulk velocity of -660 km/s. This molecular wind is likely associated to a multi-component X-ray Ultra-Fast Outflow with velocities reaching up to ~0.1c and column densities in the range 10^{21-23.9} cm^-2 that was reported in the source prior to the LMT observations. The momentum load estimated in the two gas phases indicates that within the observational uncertainties the outflow is consistent with being propagating through the galaxy and sweeping up the gas while conserving its energy. This scenario, which has been often postulated as a viable mechanism of how AGN feedback takes place, has so far been observed only in ULIRGs sources. IRAS 17020+4544 with bolometric and infrared luminosity respectively of 5X10^{44} erg/s and 1.05X10^{11} L_sun appears to be an example of AGN feedback in a NLSy1 Galaxy (a low power AGN). New proprietary multi-wavelength data recently obtained on this source will allow us to corroborate the proposed hypothesis.
Submillimetre and millimetre observations are important in probing the properties of the molecular gas and dust around obscured active galactic nuclei (AGNs) and their feedback. With very high-resolution (0.02x0.03 (2x3 pc)) ALMA 345 GHz observations of CO 3-2, HCO$^+$ 4-3, HCN 4-3 $ u_2$=1$f$, and continuum we have studied the molecular outflow and nucleus of the extremely radio-quiet lenticular galaxy NGC1377. The outflow is resolved, revealing a 150 pc long, clumpy, high-velocity, collimated molecular jet. The molecular emission is emerging from the spine of the jet with an average diameter of 3-7 pc. A narrow-angle, rotating molecular wind surrounds the jet and is enveloped by a larger-scale, slower CO-emitting structure. The jet and narrow wind are turbulent ($sigma>$40 kms$^{-1}$) and have steep radial gas excitation gradients. The jet shows velocity reversals that we propose are caused by precession, or episodic directional changes. We suggest that an important process powering the outflow is magneto-centrifugal driving. In contrast, the large-scale CO-envelope may be a slow wind, or cocoon that stems from jet-wind interactions. An asymmetric, nuclear r$sim$2 pc and hot (>180 K) dust structure with a high molecular column density, N(H$_2$)$sim1.8 times 10^{24}$ cm$^{-2}$, is detected in continuum and vibrationally excited HCN. Its luminosity is likely powered by a buried AGN. The mass of the supermassive black hole (SMBH) is estimated to $sim9times10^6$ M$_odot$ and the SMBH of NGC1377 appears to be at the end of an intense phase of accretion. The nuclear growth may be fuelled by low-angular momentum gas inflowing from gas ejected in the molecular jet and wind. Such a feedback-loop of cyclic accretion and outflows would be an effective process in growing the nuclear SMBH. This result invites new questions as to SMBH growth processes in obscured, dusty galaxies.
We present ALMA observations of the CO(2-1) and CO(3-2) molecular gas transitions and associated (sub)-mm continua of the nearby Seyfert 1.5 galaxy NGC3227 with angular resolutions 0.085-0.21 (7-15pc). On large scales the cold molecular gas shows circular motions as well as streaming motions on scales of a few hundred parsecs associated with a large scale bar. We fitted the nuclear ALMA 1.3mm emission with an unresolved component and an extended component. The 850$mu$m emission shows at least two extended components, one along the major axis of the nuclear disk and the other along the axis of the ionization cone. The molecular gas in the central region (1 ~73pc) shows several CO clumps with complex kinematics which appears to be dominated by non-circular motions. While we cannot demonstrate conclusively the presence of a warped nuclear disk, we also detected non-circular motions along the kinematic minor axis. They reach line-of-sight velocities of v-vsys =150-200km/s. Assuming that the radial motions are in the plane of the galaxy, then we interpret them as a nuclear molecular outflow due to molecular gas in the host galaxy being entrained by the AGN wind. We derive molecular outflow rates of $5,M_odot,{rm yr}^{-1}$ and $0.6,M_odot,{rm yr}^{-1}$ at projected distances of up to 30pc to the northeast and southwest of the AGN, respectively. At the AGN location we estimate a mass in molecular gas of $5times 10^{5},M_odot$ and an average column density $N({rm H}_2) = 2-3times 10^{23},{rm cm}^{-2}$ in the inner 15pc. The nuclear molecular gas and sub-mm continuum emission of NGC3227 do not resemble the classical compact torus. Rather, these emissions extend for several tens of parsecs and appear connected with the circumnuclear ring in the host galaxy disk, as found in other local AGN. (Abridged)