Do you want to publish a course? Click here

On the Riesz means of $delta_k(n)$

79   0   0.0 ( 0 )
 Added by Saurabh Singh
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $kgeq 1$ be an integer. Let $delta_k(n)$ denote the maximum divisor of $n$ which is co-prime to $k$. We study the error term of the general $m$-th Riesz mean of the arithmetical function $delta_k(n)$ for any positive integer $m ge 1$, namely the error term $E_m(x)$ where [ frac{1}{m!}sum_{n leq x}delta_k(n) left( 1-frac{n}{x} right)^m = M_{m, k}(x) + E_{m, k}(x). ] We establish a non-trivial upper bound for $left | E_{m, k} (x) right |$, for any integer $mgeq 1$.



rate research

Read More

In this paper we study the L^p-convergence of the Riesz means for the sublaplacian on the sphere S^{2n-1} in the complex n-dimensional space C^n. We show that the Riesz means of order delta of a function f converge to f in L^p(S^{2n-1}) when delta>delta(p):=(2n-1)|12-1p|. The index delta(p) improves the one found by Alexopoulos and Lohoue, $2n|12-1p|$, and it coincides with the one found by Mauceri and, with different methods, by Mueller in the case of sublaplacian on the Heisenberg group.
137 - Xudong Lai 2021
In this paper, we establish the full $L_p$ boundedness of noncommutative Bochner-Riesz means on two-dimensional quantum tori, which completely resolves an open problem raised in cite{CXY13} in the sense of the $L_p$ convergence for two dimensions. The main ingredients are sharper estimates of noncommutative Kakeya maximal functions and geometric estimates in the plain. We make the most of noncommutative theories of maximal/square functions, together with microlocal decompositions in both proofs of sharper estimates of Kakeya maximal functions and Bochner-Riesz means. We point out that even geometric estimates in the plain are different from that in the commutative case.
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the proofs are Bakers theory and Bilu-Hanrot-Voutiers result on primitive divisors of Lucas numbers.
128 - Jori Merikoski 2019
We show that the largest prime factor of $n^2+1$ is infinitely often greater than $n^{1.279}$. This improves the result of de la Bret`eche and Drappeau (2019) who obtained this with $1.2182$ in place of $1.279.$ The main new ingredients in the proof are a new Type II estimate and using this estimate by applying Harmans sieve method. To prove the Type II estimate we use the bounds of Deshouillers and Iwaniec on linear forms of Kloosterman sums. We also show that conditionally on Selbergs eigenvalue conjecture the exponent $1.279$ may be increased to $1.312.$
Let Hom^N_d be the set of morphisms of degree d from P^N to itself. For f an element of PGL_{N+1}, let phi^f represent the conjugation action f^{-1} phi f. Let M^N_d = Hom_d^N/PGL_{N+1} be the moduli space of degree d morphisms of P^N. A field of definition for class of morphisms is a field over which at least one morphism in the class is defined. The field of moduli for a class of morphisms is the fixed field of the set of Galois elements fixing that class. Every field of definition contains the field of moduli. In this article, we give a sufficient condition for the field of moduli to be a field of definition for morphisms whose stabilizer group is trivial.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا