Do you want to publish a course? Click here

Relation between Gene Content and Taxonomy in Chloroplasts

65   0   0.0 ( 0 )
 Added by Christophe Guyeux
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

The aim of this study is to investigate the relation that can be found between the phylogeny of a large set of complete chloroplast genomes, and the evolution of gene content inside these sequences. Core and pan genomes have been computed on textit{de novo} annotation of these 845 genomes, the former being used for producing well-supported phylogenetic tree while the latter provides information regarding the evolution of gene contents over time. It details too the specificity of some branches of the tree, when specificity is obtained on accessory genes. After having detailed the material and methods, we emphasize some remarkable relation between well-known events of the chloroplast history, like endosymbiosis, and the evolution of gene contents over the phylogenetic tree.



rate research

Read More

The Dissertation is focused on the studies of associations between functional elements in human genome and their nucleotide structure. The asymmetry in nucleotide content (skew, bias) was chosen as the main feature for nucleotide structure. A significant difference in nucleotide content asymmetry was found for human exons vs. introns. Specifically, exon sequences display bias for purines (i.e., excess of A and G over C and T), while introns exhibit keto-amino skew (i.e. excess of G and T over A and C). The extents of these biases depend upon gene expression patterns. The highest intronic keto-amino skew is found in the introns of housekeeping genes. In the case of introns, whose sequences are under weak repair system, the AT->GC and CG->TA substitutions are preferentially accumulated. A comparative analysis of gene sequences encoding cytochrome P450 2E1 of Homo sapiens and representative mammals was done. The cladistic tree on the basis of coding sequences similarity of the gene Cyp2e1 was constructed. A new programming tools of NCBI database sequence mining and analysis was developed, resulting in construction of a own database.
We train a neural network to predict human gene expression levels based on experimental data for rat cells. The network is trained with paired human/rat samples from the Open TG-GATES database, where paired samples were treated with the same compound at the same dose. When evaluated on a test set of held out compounds, the network successfully predicts human expression levels. On the majority of the test compounds, the list of differentially expressed genes determined from predicted expression levels agrees well with the list of differentially expressed genes determined from actual human experimental data.
139 - Xiang Wan , Can Yang , Qiang Yang 2010
Gene-gene interactions have long been recognized to be fundamentally important to understand genetic causes of complex disease traits. At present, identifying gene-gene interactions from genome-wide case-control studies is computationally and methodologically challenging. In this paper, we introduce a simple but powerful method, named `BOolean Operation based Screening and Testing(BOOST). To discover unknown gene-gene interactions that underlie complex diseases, BOOST allows examining all pairwise interactions in genome-wide case-control studies in a remarkably fast manner. We have carried out interaction analyses on seven data sets from the Wellcome Trust Case Control Consortium (WTCCC). Each analysis took less than 60 hours on a standard 3.0 GHz desktop with 4G memory running Windows XP system. The interaction patterns identified from the type 1 diabetes data set display significant difference from those identified from the rheumatoid arthritis data set, while both data sets share a very similar hit region in the WTCCC report. BOOST has also identified many undiscovered interactions between genes in the major histocompatibility complex (MHC) region in the type 1 diabetes data set. In the coming era of large-scale interaction mapping in genome-wide case-control studies, our method can serve as a computationally and statistically useful tool.
Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottleneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm, that offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, that is based on 27 genes, reports at least $30$ times better mathematical significance (average Dunns Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature.
115 - Sigve Nakken 2021
Summary: Interpretation and prioritization of candidate hits from genome-scale screening experiments represent a significant analytical challenge, particularly when it comes to an understanding of cancer relevance. We have developed a flexible tool that substantially refines gene set interpretability in cancer by leveraging a broad scope of prior knowledge unavailable in existing frameworks, including data on target tractabilities, tumor-type association strengths, protein complexes and protein-protein interactions, tissue and cell-type expression specificities, subcellular localizations, prognostic associations, cancer dependency maps, and information on genes of poorly defined or unknown function. Availability: oncoEnrichR is developed in R, and is freely available as a stand-alone R package. A web interface to oncoEnrichR is provided through the Galaxy framework (https://oncotools.elixir.no). All code is open-source under the MIT license, with documentation, example datasets and and instructions for usage available at https://github.com/sigven/oncoEnrichR/ Contact: [email protected]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا