Do you want to publish a course? Click here

Optimal waveform for the entrainment of oscillators perturbed by an amplitude-modulated high-frequency force

68   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze limit cycle oscillators under perturbation constructed as a product of two signals, namely, an envelope with a period close to natural period of an oscillator and a high-frequency carrier signal. A theory for obtaining an envelope waveform that achieves the maximal frequency interval of entrained oscillators is presented. The optimization problem for fixed power and maximal allowed amplitude is solved by employing the phase reduction method and the Pontryagins maximum principle. We have shown that the optimal envelope waveform is a bang-bang-type solution. Also, we have found inversion symmetry that relates two signals with different powers, but the same interval of entrained frequencies. The theoretical results are confirmed numerically on FitzHugh-Nagumo oscillators.



rate research

Read More

The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.
122 - Fatihcan M. Atay 2003
Coupled oscillators are shown to experience amplitude death for a much larger set of parameter values when they are connected with time delays distributed over an interval rather than concentrated at a point. Distributed delays enlarge and merge death islands in the parameter space. Furthermore, when the variance of the distribution is larger than a threshold the death region becomes unbounded and amplitude death can occur for any average value of delay. These phenomena are observed even with a small spread of delays, for different distribution functions, and an arbitrary number of oscillators.
79 - Fatihcan M. Atay 2004
Networks of weakly nonlinear oscillators are considered with diffusive and time-delayed coupling. Averaging theory is used to determine parameter ranges for which the network experiences amplitude death, whereby oscillations are quenched and the equilibrium solution has a large domain of attraction. The amplitude death is shown to be a common phenomenon, which can be observed regardless of the precise nature of the nonlinearities and under very general coupling conditions. In addition, when the network consists of dissimilar oscillators, there exist parameter values for which only parts of the network are suppressed. Sufficient conditions are derived for total and partial amplitude death in arbitrary network topologies with general nonlinearities, coupling coefficients, and connection delays.
We explore chaos in the Kuramoto model with multimodal distributions of the natural frequencies of oscillators and provide a comprehensive description under what conditions chaos occurs. For a natural frequency distribution with $M$ peaks it is typical that there is a range of coupling strengths such that oscillators belonging to each peak form a synchronized cluster, but the clusters do not globally synchronize. We use collective coordinates to describe the inter- and intra-cluster dynamics, which reduces the Kuramoto model to $2M-1$ degrees of freedom. We show that under some assumptions, there is a time-scale splitting between the slow intracluster dynamics and fast intercluster dynamics, which reduces the collective coordinate model to an $M-1$ degree of freedom rescaled Kuramoto model. Therefore, four or more clusters are required to yield the three degrees of freedom necessary for chaos. However, the time-scale splitting breaks down if a cluster intermittently desynchronizes. We show that this intermittent desynchronization provides a mechanism for chaos for trimodal natural frequency distributions. In addition, we use collective coordinates to show analytically that chaos cannot occur for bimodal frequency distributions, even if they are asymmetric and if intermittent desynchronization occurs.
152 - Ming Luo , Yongjun Wu 2011
A universal approach is proposed for suppression of collective synchrony in a large population of interacting rhythmic units. We demonstrate that provided that the internal coupling is weak, stabilization of overall oscillations with vanishing stimulation leads to desynchronization in a large ensemble of coupled oscillators, without altering significantly the essential nature of each constituent oscillator. We expect our findings to be a starting point for the issue of destroying undesired synchronization, e. g. desynchronization techniques for deep brain stimulation for neurological diseases characterized by pathological neural synchronization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا