We have performed a 3-D Monte Carlo simulation of a system composed of two identical light quarks ($qq$) and two identical antiquarks ($bar Qbar Q$) and determined whether it is energetically more favorable to form a tetraquark or two mesons, as a function of the interparticle separation distance which, for a fixed number of particles, can be identified as a particle density. In this proceedings, we highlight the main results and elaborate on the implications in properties like the correlation function for two-mesons and characterize the isolated diquark correlation function. We analize the four-body potential evolution and exhibit its linear behavior as a function of the invariant distance. We track the dynamical flipping among configurations to determine the recombination probability, exhibiting the importance of the tetraquark state.