Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique


Abstract in English

For the first time, a direct detection BOTDR is demonstrated for distributed dynamic strain sensing incorporating double-edge technique, time-division multiplexing technique and upconversion technique. The double edges are realized by using the transmission curve and reflection curve of an all-fiber Fabry-Perot interferometer (FPI). Benefiting from the low loss of the fiber at, the time-division multiplexing technique is performed to realize the double-edge technique by using only a single-channel FPI and only one piece of a detector. In order to detect the weak spontaneous Brillouin backscattering signal efficiently, a fiber-coupled upconversion detector is adopted to upconvert the backscattering signal at 1548.1 nm to 863 nm, which is detected by a Si-APD finally. In the experiment, dynamic strain disturbance up to 1.9m{epsilon} over 1.5 km of polarization maintaining fiber is detected at a sampling rate of 30 Hz. An accuracy of 30{mu}{epsilon} and spatial resolution of 0.6 m is realized.

Download