The paper addresses the problem of detecting attacks on distributed estimator networks that aim to intentionally bias process estimates produced by the network. It provides a sufficient condition, in terms of the feasibility of certain linear matrix inequalities, which guarantees distributed input attack detection using an $H_infty$ approach.
The paper considers a problem of detecting and mitigating biasing attacks on networks of state observers targeting cooperative state estimation algorithms. The problem is cast within the recently developed framework of distributed estimation utilizing the vector dissipativity approach. The paper shows that a network of distributed observers can be endowed with an additional attack detection layer capable of detecting biasing attacks and correcting their effect on estimates produced by the network. An example is provided to illustrate the performance of the proposed distributed attack detector.
We consider the distributed $H_infty$ estimation problem with additional requirement of resilience to biasing attacks. An attack scenario is considered where an adversary misappropriates some of the observer nodes and injects biasing signals into observer dynamics. Using a dynamic modelling of biasing attack inputs, a novel distributed state estimation algorithm is proposed which involves feedback from a network of attack detection filters. We show that each observer in the network can be computed in real time and in a decentralized fashion. When these controlled observers are interconnected to form a network, they are shown to cooperatively produce an unbiased estimate the plant, despite some of the nodes are compromised.
We develop a decentralized $H_infty$ synthesis approach to detection of biasing misappropriation attacks on distributed observers. Its starting point is to equip the observer with an attack model which is then used in the design of attack detectors. A two-step design procedure is proposed. First, an initial centralized setup is carried out which enables each node to compute the parameters of its attack detector online in a decentralized manner, without interacting with other nodes. Each such detector is designed using the $H_infty$ approach. Next, the attack detectors are embedded into the network, which allows them to detect misappropriated nodes from innovation in the network interconnections.
We consider the distributed $H_infty$ estimation problem with an additional requirement of resilience to biasing attacks. An attack scenario is considered where an adversary misappropriates some of the observer nodes and injects biasing signals into observer dynamics. The paper proposes a procedure for the derivation of a distributed observer which endows each node with an attack detector which also functions as an attack compensating feedback controller for the main observer. Connecting these controlled observers into a network results in a distributed observer whose nodes produce unbiased robust estimates of the plant. We show that the gains for each controlled observer in the network can be computed in a decentralized fashion, thus reducing vulnerability of the network.
We construct team-optimal estimation algorithms over distributed networks for state estimation in the finite-horizon mean-square error (MSE) sense. Here, we have a distributed collection of agents with processing and cooperation capabilities. These agents observe noisy samples of a desired state through a linear model and seek to learn this state by interacting with each other. Although this problem has attracted significant attention and been studied extensively in fields including machine learning and signal processing, all the well-known strategies do not achieve team-optimal learning performance in the finite-horizon MSE sense. To this end, we formulate the finite-horizon distributed minimum MSE (MMSE) when there is no restriction on the size of the disclosed information, i.e., oracle performance, over an arbitrary network topology. Subsequently, we show that exchange of local estimates is sufficient to achieve the oracle performance only over certain network topologies. By inspecting these network structures, we propose recursive algorithms achieving the oracle performance through the disclosure of local estimates. For practical implementations we also provide approaches to reduce the complexity of the algorithms through the time-windowing of the observations. Finally, in the numerical examples, we demonstrate the superior performance of the introduced algorithms in the finite-horizon MSE sense due to optimal estimation.