Dense Wide-Baseline Scene Flow From Two Handheld Video Cameras


Abstract in English

We propose a new technique for computing dense scene flow from two handheld videos with wide camera baselines and different photometric properties due to different sensors or camera settings like exposure and white balance. Our technique innovates in two ways over existing methods: (1) it supports independently moving cameras, and (2) it computes dense scene flow for wide-baseline scenarios.We achieve this by combining state-of-the-art wide-baseline correspondence finding with a variational scene flow formulation. First, we compute dense, wide-baseline correspondences using DAISY descriptors for matching between cameras and over time. We then detect and replace occluded pixels in the correspondence fields using a novel edge-preserving Laplacian correspondence completion technique. We finally refine the computed correspondence fields in a variational scene flow formulation. We show dense scene flow results computed from challenging datasets with independently moving, handheld cameras of varying camera settings.

Download