A non-exponential extension of Sanovs theorem via convex duality


Abstract in English

This work is devoted to a vast extension of Sanovs theorem, in Laplace principle form, based on alternatives to the classical convex dual pair of relative entropy and cumulant generating functional. The abstract results give rise to a number of probabilistic limit theorems and asymptotics. For instance, widely applicable non-exponential large deviation upper bounds are derived for empirical distributions and averages of i.i.d. samples under minimal integrability assumptions, notably accommodating heavy-tailed distributions. Other interesting manifestations of the abstract results include new results on the rate of convergence of empirical measures in Wasserstein distance, uniform large deviation bounds, and variational problems involving optimal transport costs, as well as an application to error estimates for approximate solutions of stochastic optimization problems. The proofs build on the Dupuis-Ellis weak convergence approach to large deviations as well as the duality theory for convex risk measures.

Download