The abundance of CH+ and OH and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500-1000 K) in PDRs with high incident FUV radiation field. The excitation may also originate in dense gas (>10^5 cm-3) followed by nonreactive collisions. Previous observations suggest that the CH+ and OH correlate with dense and warm gas, and formation pumping contributes to CH+ excitation. We examine the spatial distribution of the CH+ and OH emission in the Orion Bar to establish their physical origin and main formation and excitation mechanisms. We present spatially sampled maps of the CH+ J=3-2 transition at 119.8 {mu}m and the OH {Lambda}-doublet at 84 {mu}m in the Orion Bar over an area of 110x110 with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas. We assess the spatial variation of CH+ J=2-1 velocity-resolved line profile observed with Herschel (HIFI). The OH and CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region. While similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are related to the observed vibrationally excited H2. This indicates that formation pumping contributes to the excitation of CH+. Interestingly, the peak of the rotationally excited OH 84 {mu}m emission coincides with a bright young object, proplyd 244-440, which shows that OH can be an excellent tracer of UV-irradiated dense gas. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J=3-2 excitation processes. The excitation of the OH {Lambda}-doublet at 84 {mu}m is mainly sensitive to the temperature and density.