Do you want to publish a course? Click here

Exocomet signatures around the A-shell star $Phi$ Leo?

83   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an intensive monitoring of high-resolution spectra of the Ca {sc ii} K line in the A7IV shell star $Phi$ Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star $beta$ Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around $Phi$ Leo. To our knowledge, with the exception of $beta$ Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that $Phi$ Leo presents the richest environment with comet-like events known to date, second only to $beta$ Pic.



rate research

Read More

Variable red- and blue-shifted absorption features observed in the Ca ii K line towards the A-type shell star $phi$ Leo have been suggested by us in a previous work to be likely due to solid, comet-like bodies in the circumstellar (CS) environment. Our aim is to expand our observational study of this object to other characteristic spectral lines of A-type photospheres as well as to lines arising in their CS shells. We have obtained more than 500 high-resolution optical spectra collected at different telescopes from December 2015 to January 2019. We have analysed some photospheric lines, in particular Ca i 4226 AA ~and Mg ii 4481 AA, as well as the circumstellar shell lines Ca ii H&K, Ca ii IR triplet, Fe ii, Ti ii, and the Balmer lines H$alpha$ and H$beta$. Our observational study reveals that $phi$ Leo is a variable $delta$ Scuti star whose spectra show remarkable dumps and bumps superimposed on the photospheric line profiles, which vary their strength and sharpness, propagate from blue- to more red-shifted radial velocities and persisting during a few hours, likely produced by non-radial pulsations. At the same time, all shell lines present an emission at $sim$3 km/s centered at the core of the CS features, and two variable absorption minima at both sides of the emission. The variations observed in the Ca ii H&K, Fe ii and Ti ii lines occur at any time scale from minutes to days and observing run, but without any clear correlation or recognizable temporal pattern among the different lines. In the case of H$alpha$ the CS contribution is also variable in just one of the observing runs. We suggest that $phi$ Leo is a rapidly rotating $delta$ Scuti star surrounded by a variable, (nearly) edge-on CS disk possibly re-supplied by the $delta$ Scuti pulsations.
127 - A. Moor , P. Abraham , A. Kospal 2013
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD95086. The strong infrared excess of the system indicates that, similarly to HR8799, {ss} Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of ~6.0x5.4 arcsec (540x490 AU) and disk inclination of ~25 degree. Assuming the same inclination for the planet candidates orbit, its re-projected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modelling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks co-exist.
We report the results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star TAP 26, carried out within the MaTYSSE programme with the ESPaDOnS spectropolarimeter at the 3.6 m Canada-France-Hawaii Telescope. Applying Zeeman-Doppler Imaging to our observations, concentrating in 2015 November and 2016 January and spanning 72 d in total, 16 d in 2015 November and 13 d in 2016 January, we reconstruct surface brightness and magnetic field maps for both epochs and demonstrate that both distributions exhibit temporal evolution not explained by differential rotation alone. We report the detection of a hot Jupiter (hJ) around TAP 26 using three different methods, two using Zeeman-Doppler Imaging (ZDI) and one Gaussian-Process Regression (GPR), with a false-alarm probability smaller than 6.10^-4. However, as a result of the aliasing related to the observing window, the orbital period cannot be uniquely determined; the orbital period with highest likelihood is 10.79 +/- 0.14 d followed by 8.99 +/- 0.09 d. Assuming the most likely period, and that the planet orbits in the stellar equatorial plane, we obtain that the planet has a minimum mass M.sin(i) of 1.66 +/- 0.31 M_Jup and orbits at 0.0968 +/- 0.0032 au from its host star. This new detection suggests that disc type II migration is efficient at generating newborn hJs, and that hJs may be more frequent around young T Tauri stars than around mature stars (or that the MaTYSSE sample is biased towards hJ-hosting stars).
Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner wall at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1-AU scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the {rho} Ophiuchi star-forming region, by detecting the light travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 {mu}m) and K (2.2 {mu}m) bands were synchronized while the 4.5 {mu}m emission lagged by 74.5 +/- 3.2 seconds. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 AU from the protostar on average, with an error of order 0.01 AU. This size is likely larger than the range of magnetospheric truncations, and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ~1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.
We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 +/- 2 AU (1.058 +/- 0.007 arcsec) from the B9-type star Kappa And. The planet was detected with Subaru/HiCIAO during the SEEDS survey, and confirmed as a bound companion via common proper motion measurements. Observed near-infrared magnitudes of J = 16.3 +/- 0.3, H = 15.2 +/- 0.2, Ks = 14.6 +/- 0.4, and L = 13.12 +/- 0.09 indicate a temperature of ~1700 K. The galactic kinematics of the host star are consistent with membership in the Columba association, implying a corresponding age of 30 +20 -10 Myr. The system age, combined with the companion photometry, points to a model-dependent companion mass ~12.8 MJup. The host stars estimated mass of 2.4-2.5 Msun places it among the most massive stars ever known to harbor an extrasolar planet or low-mass brown dwarf. While the mass of the companion is close to the deuterium burning limit, its mass ratio, orbital separation, and likely planet-like formation scenario imply that it may be best defined as a `Super-Jupiter with properties similar to other recently discovered companions to massive stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا