Mapping the Chemical Potential Landscape of a Triple Quantum Dot


Abstract in English

We investigate the non-equilibrium charge dynamics of a triple quantum dot and demonstrate how electron transport through these systems can give rise to non-trivial tunnelling paths. Using a real-time charge sensing method we establish tunnelling pathways taken by particular electrons under well-defined electrostatic configurations. We show how these measurements map to the chemical potentials for different charge states across the system. We use a modified Hubbard Hamiltonian to describe the system dynamics and show that it reproduces all experimental observations.

Download